Spatial analysis reveals targetable macrophage-mediated mechanisms of immune evasion in hepatocellular carcinoma minimal residual disease

Lee, Y.-T. et al. The mortality and overall survival trends of primary liver cancer in the United States. J. Natl. Cancer Inst. 113, 1531–1541 (2021).

Article  PubMed  Google Scholar 

Lei, J. et al. Response to transarterial chemoembolization may serve as selection criteria for hepatocellular carcinoma liver transplantation. Oncotarget 8, 91328–91342 (2017).

Article  PubMed  Google Scholar 

Kim, D. J. et al. Recurrence of hepatocellular carcinoma: importance of mRECIST response to chemoembolization and tumor size. Am. J. Transplant 14, 1383–1390 (2014).

Article  PubMed  CAS  Google Scholar 

Agopian, V. G. et al. Impact of pretransplant bridging locoregional therapy for patients with hepatocellular carcinoma within Milan criteria undergoing liver transplantation: analysis of 3601 patients from the US multicenter HCC transplant consortium. Ann. Surg. 266, 525–535 (2017).

Article  PubMed  Google Scholar 

Adeniji, N. et al. Impact of bridging locoregional therapies for hepatocellular carcinoma on post-transplant clinical outcome. Clin. Transplant. 34, e14128 (2020).

Article  PubMed  Google Scholar 

Ghajar, C. M. Metastasis prevention by targeting the dormant niche. Nat. Rev. Cancer 15, 238–247 (2015).

Article  PubMed  CAS  Google Scholar 

Lee, T. K.-W., Guan, X.-Y. & Ma, S. Cancer stem cells in hepatocellular carcinoma - from origin to clinical implications. Nat. Rev. Gastroenterol. Hepatol. 19, 26–44 (2022).

Article  PubMed  Google Scholar 

Price, T. T. et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci. Transl. Med. 8, 340ra73 (2016).

Article  PubMed  Google Scholar 

Shachaf, C. M. et al. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431, 1112–1117 (2004).

Article  PubMed  CAS  Google Scholar 

Ding, W. et al. Clinicopathologic and prognostic significance of tumor-associated macrophages in patients with hepatocellular carcinoma: a meta-analysis. PLoS ONE 14, e0223971 (2019).

Article  PubMed  CAS  Google Scholar 

Zhu, X.-D. et al. High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. J. Clin. Oncol. 26, 2707–2716 (2008).

Article  PubMed  Google Scholar 

Borriello, L. et al. Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nat. Commun. 13, 626 (2022).

Article  PubMed  CAS  Google Scholar 

Dhanasekaran, R. et al. MYC overexpression drives immune evasion in hepatocellular carcinoma that is reversible through restoration of proinflammatory macrophages. Cancer Res. 83, 626–640 (2023).

Article  PubMed  CAS  Google Scholar 

Dhanasekaran, R. et al. MYC and Twist1 cooperate to drive metastasis by eliciting crosstalk between cancer and innate immunity. eLife https://doi.org/10.7554/elife.50731 (2020).

Black, S. et al. CODEX multiplexed tissue imaging with DNA-conjugated antibodies. Nat. Protoc. 16, 3802–3835 (2021).

Article  PubMed  CAS  Google Scholar 

Uenishi, T. et al. Cytokeratin 19 expression in hepatocellular carcinoma predicts early postoperative recurrence. Cancer Sci. 94, 851–857 (2003).

Article  PubMed  CAS  Google Scholar 

Khosla, R. et al. EpCAM+ liver cancer stem-like cells exhibiting autocrine wnt signaling potentially originate in cirrhotic patients. Stem Cells Transl. Med. 6, 807–818 (2017).

Article  PubMed  CAS  Google Scholar 

Liu, C.-Q. et al. Expression patterns of programmed death ligand 1 correlate with different microenvironments and patient prognosis in hepatocellular carcinoma. Br. J. Cancer 119, 80–88 (2018).

Article  PubMed  CAS  Google Scholar 

Pfister, D. et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 592, 450–456 (2021).

Article  PubMed  CAS  Google Scholar 

Cancer Genome Atlas Research Network. Comprehensive and integrative genomic characterization of hepatocellular carcinoma. Cell 169, 1327–1341.e23 (2017).

Guo, Y. et al. The heterogeneity of immune cell infiltration landscape and its immunotherapeutic implications in hepatocellular carcinoma. Front. Immunol. 13, 861525 (2022).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Yu, S. et al. Tumor-infiltrating immune cells in hepatocellular carcinoma: Tregs is correlated with poor overall survival. PLoS ONE 15, e0231003 (2020).

Article  PubMed  PubMed Central  CAS  Google Scholar 

Veglia, F. et al. Analysis of classical neutrophils and polymorphonuclear myeloid-derived suppressor cells in cancer patients and tumor-bearing mice. J. Exp. Med. 218, e20201803 (2021).

Article  PubMed  CAS  Google Scholar 

Salcher, S. et al. High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer. Cancer Cell 40, 1503–1520.e8 (2022).

Article  PubMed  CAS  Google Scholar 

Singal, A. G. et al. AASLD practice guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 78, 1922–1965 (2023).

PubMed  Google Scholar 

Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 183, 838 (2020).

Article  PubMed  Google Scholar 

Dasari, A., Grothey, A. & Kopetz, S. Circulating tumor DNA-defined minimal residual disease in solid tumors: opportunities to accelerate the development of adjuvant therapies. J. Clin. Oncol. 36, JCO2018789032 (2018).

Article  PubMed  Google Scholar 

Villanueva, A. et al. Combining clinical, pathology, and gene expression data to predict recurrence of hepatocellular carcinoma. Gastroenterology 140, 1501–12.e2 (2011).

Article  PubMed  CAS  Google Scholar 

Pello, O. M. et al. Role of c-MYC in alternative activation of human macrophages and tumor-associated macrophage biology. Blood 119, 411–421 (2012).

Article  PubMed  Google Scholar 

Li, Z. et al. Cancer-associated fibroblasts promote PD-L1 expression in mice cancer cells via secreting CXCL5. Int. J. Cancer 145, 1946–1957 (2019).

Article  PubMed  CAS  Google Scholar 

Zhang, W. et al. IL-6 promotes PD-L1 expression in monocytes and macrophages by decreasing protein tyrosine phosphatase receptor type O expression in human hepatocellular carcinoma. J. Immunother. Cancer 8, e000285 (2020).

Article  PubMed  Google Scholar 

Xi, X. et al. Interleukin-22 promotes PD-L1 expression via STAT3 in colon cancer cells. Oncol. Lett. 22, 716 (2021).

Article  PubMed  CAS  Google Scholar 

Kobori, T. et al. Interleukin-18 amplifies macrophage polarization and morphological alteration, leading to excessive angiogenesis. Front. Immunol. 9, 334 (2018).

Article  PubMed  Google Scholar 

Patel, M. & Pillai, A. Management of intermediate-stage hepatocellular carcinoma: systemic versus locoregional therapy. Surg. Oncol. Clin. N. Am. 33, 159–172 (2024).

Article  PubMed  Google Scholar 

Lu, Y. et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat. Commun. 13, 4594 (2022).

Article  PubMed 

留言 (0)

沒有登入
gif