Vascular heterogeneity of tight junction Claudins guides organotropic metastasis

Chaffer, C. L. & Weinberg, R. A. A perspective on cancer cell metastasis. Science 331, 1559–1564 (2011).

Article  CAS  PubMed  Google Scholar 

Kennecke, H. et al. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol. 28, 3271–3277 (2010).

Article  PubMed  Google Scholar 

Paget, S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 8, 98–101 (1989).

CAS  PubMed  Google Scholar 

Kaplan, R. N., Rafii, S. & Lyden, D. Preparing the ‘soil’: the premetastatic niche. Cancer Res. 66, 11089–11093 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gao, Y. et al. Metastasis organotropism: redefining the congenial soil. Dev. Cell 49, 375–391 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rezaie, J. et al. Tumor-derived extracellular vesicles: the metastatic organotropism drivers. Life Sci. 289, 120216 (2022).

Article  CAS  PubMed  Google Scholar 

Wortzel, I., Dror, S., Kenific, C. M. & Lyden, D. Exosome-mediated metastasis: communication from a distance. Dev. Cell 49, 347–360 (2019).

Article  CAS  PubMed  Google Scholar 

Peinado, H. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat. Rev. Cancer 17, 302–317 (2017).

Article  CAS  PubMed  Google Scholar 

Reymond, N., d’Agua, B. B. & Ridley, A. J. Crossing the endothelial barrier during metastasis. Nat. Rev. Cancer 13, 858–870 (2013).

Article  CAS  PubMed  Google Scholar 

Augustin, H. G. & Koh, G. Y.Organotypic vasculature: from descriptive heterogeneity to functional pathophysiology. Science 357, eaal2379 (2017).

Article  PubMed  Google Scholar 

Ghajar, C. M. et al. The perivascular niche regulates breast tumour dormancy. Nat. Cell Biol. 15, 807–817 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cooke, V. G. et al. Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by Met signaling pathway. Cancer Cell 21, 66–81 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, J. et al. Heterogeneous perivascular cell coverage affects breast cancer metastasis and response to chemotherapy. JCI Insight 1, e90733 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Rybinski, B., Franco-Barraza, J. & Cukierman, E. The wound healing, chronic fibrosis, and cancer progression triad. Physiol. Genomics 46, 223–244 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen, Y. et al. Dual reporter genetic mouse models of pancreatic cancer identify an epithelial-to-mesenchymal transition-independent metastasis program. EMBO Mol. Med. 10, e9085 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Becker, L. M. et al. Epigenetic reprogramming of cancer-associated fibroblasts deregulates glucose metabolism and facilitates progression of breast cancer. Cell Rep. 31, 107701 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carstens, J. L. et al. Stabilized epithelial phenotype of cancer cells in primary tumors leads to increased colonization of liver metastasis in pancreatic cancer. Cell Rep. 35, 108990 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Piersma, B., Hayward, M. K. & Weaver, V. M. Fibrosis and cancer: a strained relationship. Biochim. Biophys. Acta Rev. Cancer 1873, 188356 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chandler, C., Liu, T., Buckanovich, R. & Coffman, L. G. The double edge sword of fibrosis in cancer. Transl. Res. 209, 55–67 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cox, T. R. et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis. Cancer Res. 73, 1721–1732 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou, C. et al. Metastases to the kidney: a comprehensive analysis of 151 patients from a tertiary referral centre. BJU Int. 117, 775–782 (2016).

Article  PubMed  Google Scholar 

Cazacu, S. M. et al. Metastases to the kidney: a case report and review of the literature. Curr. Health Sci. J. 46, 80–89 (2020).

PubMed  PubMed Central  Google Scholar 

Benest, A. V. et al. Angiopoietin-2 is critical for cytokine-induced vascular leakage. PLoS ONE 8, e70459 (2013).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Holopainen, T. et al. Effects of angiopoietin-2-blocking antibody on endothelial cell–cell junctions and lung metastasis. J. Natl Cancer Inst. 104, 461–475 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keskin, D. et al. Targeting vascular pericytes in hypoxic tumors increases lung metastasis via angiopoietin-2. Cell Rep. 10, 1066–1081 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gengenbacher, N. et al. Timed Ang2-targeted therapy identifies the angiopoietin–Tie pathway as key regulator of fatal lymphogenous metastasis. Cancer Discov. 11, 424–445 (2021).

Article  CAS  PubMed  Google Scholar 

Park, J. S. et al. Normalization of tumor vessels by Tie2 activation and Ang2 inhibition enhances drug delivery and produces a favorable tumor microenvironment. Cancer Cell 31, 157–158 (2017).

Article  CAS  PubMed  Google Scholar 

Srivastava, K. et al. Postsurgical adjuvant tumor therapy by combining anti-angiopoietin-2 and metronomic chemotherapy limits metastatic growth. Cancer Cell 26, 880–895 (2014).

Article  CAS  PubMed  Google Scholar 

Rigamonti, N. & De Palma, M. A role for angiopoietin-2 in organ-specific metastasis. Cell Rep. 4, 621–623 (2013).

Article  CAS  PubMed  Google Scholar 

Li, P., He, Q., Luo, C. & Qian, L. Diagnostic and prognostic potential of serum angiopoietin-2 expression in human breast cancer. Int. J. Clin. Exp. Pathol. 8, 660–664 (2015).

PubMed  PubMed Central  Google Scholar 

Tiainen, L. et al. High baseline Tie1 level predicts poor survival in metastatic breast cancer. BMC Cancer 19, 732 (2019).

Article  PubMed  PubMed Central 

留言 (0)

沒有登入
gif