Operationalizing the Use of Biofabricated Tissue Models as Preclinical Screening Platforms for Drug Discovery and Development

1. Dowden, H., Munro, J. Trends in Clinical Success Rates and Therapeutic Focus. Nat. Rev. Drug Discov. 2019, 18, 495–496.
Google Scholar | Crossref | Medline2. Harrison, R. K. Phase II and Phase III Failures: 2013–2015. Nat. Rev. Drug Discov. 2016, 15, 817–818.
Google Scholar | Crossref | Medline3. Langhans, S. A. Three-Dimensional In Vitro Cell Culture Models in Drug Discovery and Drug Repositioning. Front. Pharmacol. 2018, 9, 6.
Google Scholar | Crossref | Medline4. Horvath, P., Aulner, N., Bickle, M., et al. Screening Out Irrelevant Cell-Based Models of Disease. Nat. Rev. Drug Discov. 2016, 15, 751–769.
Google Scholar | Crossref | Medline5. Pampaloni, F., Reynaud, E. G., Stelzer, E. H. K. The Third Dimension Bridges the Gap between Cell Culture and Live Tissue. Nat. Rev. Mol. Cell Biol. 2007, 8, 839–845.
Google Scholar | Crossref | Medline6. Kelm, J. M., Lal-Nag, M., Sittampalam, G. S., et al. Translational In Vitro Research: Integrating 3D Drug Discovery and Development Processes into the Drug Development Pipeline. Drug Discov. Today 2019, 24, 26–30.
Google Scholar | Crossref | Medline7. Ekert, J. E., Deakyne, J., Pribul-Allen, P., et al. Recommended Guidelines for Developing, Qualifying, and Implementing Complex In Vitro Models (CIVMs) for Drug Discovery. SLAS Discov. 2020, 25, 1174–1190.
Google Scholar | Medline8. Batista Leite, S., Cipriano, M., Carpi, D., et al. Establishing the Scientific Validity of Complex In Vitro Models: Results of a EURL ECVAM Survey. Publ. Off. Eur. Union 2021, 1–28.
Google Scholar9. Ingber, D. E. Is It Time for Reviewer 3 to Request Human Organ Chip Experiments Instead of Animal Validation Studies? Adv. Sci. 2020, 7, 2002030.
Google Scholar | Crossref10. Gaskell, H., Sharma, P., Colley, H. E., et al. Characterization of a Functional C3A Liver Spheroid Model. Toxicol. Res. (Camb.) 2016, 5, 1053–1065.
Google Scholar | Crossref | Medline11. Kondo, J., Ekawa, T., Endo, H., et al. High-Throughput Screening in Colorectal Cancer Tissue-Originated Spheroids. Cancer Sci. 2019, 110, 345–355.
Google Scholar | Crossref | Medline12. Rossi, G., Manfrin, A., Lutolf, M. P. Progress and Potential in Organoid Research. Nat. Rev. Genet. 2018, 19, 671–687.
Google Scholar | Crossref | Medline13. Tanaka, N., Osman, A. A., Takahashi, Y., et al. Head and Neck Cancer Organoids Established by Modification of the CTOS Method Can Be Used to Predict In Vivo Drug Sensitivity. Oral Oncol. 2018, 87, 49–57.
Google Scholar | Crossref | Medline14. Bock, C., Boutros, M., Camp, J. G., et al. The Organoid Cell Atlas. Nat. Biotechnol. 2020, 39, 13–17.
Google Scholar | Crossref15. Ma, X., Liu, J., Zhu, W., et al. 3D Bioprinting of Functional Tissue Models for Personalized Drug Screening and In Vitro Disease Modeling. Adv. Drug Deliv. Rev. 2018, 132, 235–251.
Google Scholar | Crossref | Medline16. Meng, F., Meyer, C. M., Joung, D., et al. 3D Bioprinted In Vitro Metastatic Models via Reconstruction of Tumor Microenvironments. Adv. Mater. 2019, 31, 1806899.
Google Scholar | Crossref17. Kim, J. H., Kim, I., Seol, Y. J., et al. Neural Cell Integration into 3D Bioprinted Skeletal Muscle Constructs Accelerates Restoration of Muscle Function. Nat. Commun. 2020, 11, 1025.
Google Scholar | Crossref | Medline18. Low, L. A., Mummery, C., Berridge, B. R., et al. Organs-on-Chips: Into the Next Decade. Nat. Rev. Drug Discov. 2021, 20, 345–361.
Google Scholar | Crossref | Medline19. Wevers, N. R., Kasi, D. G., Gray, T., et al. A Perfused Human Blood–Brain Barrier On-a-Chip for High-Throughput Assessment of Barrier Function and Antibody Transport. Fluids Barriers CNS 2018, 15, 23.
Google Scholar | Crossref | Medline20. Obermeier, B., Daneman, R., Ransohoff, R. M. Development, Maintenance and Disruption of the Blood-Brain Barrier. Nat. Med. 2013, 19, 1584–1596.
Google Scholar | Crossref | Medline21. Park, S. E., Georgescu, A., Huh, D. Organoids-on-a-Chip. Science 2019, 364, 960–965.
Google Scholar | Crossref | Medline22. Yu, F., Hunziker, W., Choudhury, D. Engineering Microfluidic Organoid-on-a-Chip Platforms. Micromachines 2019, 10, 165.
Google Scholar | Crossref23. Zhang, S., Wan, Z., Kamm, R. D. Vascularized Organoids on a Chip: Strategies for Engineering Organoids with Functional Vasculature. Lab Chip 2021, 21, 473–488.
Google Scholar | Crossref | Medline24. Hofer, M., Lutolf, M. P. Engineering Organoids. Nat. Rev. Mater. 2021, 6, 402–420.
Google Scholar | Crossref25. Lawlor, K. T., Vanslambrouck, J. M., Higgins, J. W., et al. Cellular Extrusion Bioprinting Improves Kidney Organoid Reproducibility and Conformation. Nat. Mater. 2021, 20, 260–271.
Google Scholar | Crossref | Medline26. Humphreys, B. D. Bioprinting Better Kidney Organoids. Nat. Mater. 2021, 20, 128–130.
Google Scholar | Crossref | Medline27. Watkins, P. B. The DILI-sim Initiative: Insights into Hepatotoxicity Mechanisms and Biomarker Interpretation. Clin. Transl. Sci. 2019, 12, 122–129.
Google Scholar | Crossref | Medline28. Liu, X., Michael, S., Bharti, K., et al. A Biofabricated Vascularized Skin Model of Atopic Dermatitis for Preclinical Studies. Biofabrication 2020, 12, 035002.
Google Scholar | Crossref | Medline29. Browning, J. R., Derr, P., Derr, K., et al. A 3D Biofabricated Cutaneous Squamous Cell Carcinoma Tissue Model with Multi-Channel Confocal Microscopy Imaging Biomarkers to Quantify Antitumor Effects of Chemotherapeutics in Tissue. Oncotarget 2020, 11, 2587–2596.
Google Scholar | Crossref | Medline30. Scannell, J. W., Bosley, J. When Quality Beats Quantity: Decision Theory, Drug Discovery, and the Reproducibility Crisis. PLoS One 2016, 11, e0147215.
Google Scholar | Crossref | Medline31. Mazzoleni, G., Di Lorenzo, D., Steimberg, N. Modelling Tissues in 3D: The Next Future of Pharmaco-Toxicology and Food Research? Genes Nutr. 2009, 4, 13–22.
Google Scholar | Crossref | Medline32. Jung, E. C., Maibach, H. I. Animal Models for Percutaneous Absorption. J. Appl. Toxicol. 2015, 35, 1–10.
Google Scholar | Crossref | Medline33. Fried, L. E., Arbiser, J. L. Application of Angiogenesis to Clinical Dermatology. Adv. Dermatol. 2008, 24, 89–103.
Google Scholar | Crossref | Medline34. Richarz, N. A., Boada, A., Carrascosa, J. M. Angiogenesis in Dermatology—Insights of Molecular Mechanisms and Latest Developments. Actas Dermosifiliogr. 2017, 108, 515–523.
Google Scholar | Crossref | Medline35. Genovese, A., Detoraki, A., Granata, F., et al. Angiogenesis, Lymphangiogenesis and Atopic Dermatitis. Chem. Immunol. Allergy 2012, 96, 50–60.
Google Scholar | Crossref | Medline36. He, H., Guttman-Yassky, E. JAK Inhibitors for Atopic Dermatitis: An Update. Am. J. Clin. Dermatol. 2019, 20, 181–192.
Google Scholar | Crossref | Medline37. Boussaad, I., Cruciani, G., Bolognin, S., et al. Integrated, Automated Maintenance, Expansion and Differentiation of 2D and 3D Patient-Derived Cellular Models for High Throughput Drug Screening. Sci. Rep. 2021, 11, 1439.
Google Scholar | Crossref38. Durens, M., Nestor, J., Williams, M., et al. High-Throughput Screening of Human Induced Pluripotent Stem Cell-Derived Brain Organoids. J. Neurosci. Methods 2020, 335, 108627.
Google Scholar | Crossref | Medline39. Renner, H., Grabos, M., Becker, K. J., et al. A Fully Automated High-Throughput Workflow for 3D-Based Chemical Screening in Human Midbrain Organoids. Elife 2020, 9, e52904.
Google Scholar | Crossref40. Bar, H., Zweifach, A. Z′ Does Not Need to Be > 0.5. SLAS Discov. 2020, 25, 1000–1008.
Google Scholar | Medline41. Wei, Z., Liu, X., Ooka, M., et al. Two-Dimensional Cellular and Three-Dimensional Bio-Printed Skin Models to Screen Topical-Use Compounds for Irritation Potential. Front. Bioeng. Biotechnol. 2020, 8, 109.
Google Scholar | Crossref | Medline42. Chen, Y., Tristan, C. A., Chen, L., et al. A Versatile Polypharmacology Platform Promotes Cytoprotection and Viability of Human Pluripotent and Differentiated Cells. Nat. Methods 2021, 18, 528–541.
Google Scholar | Crossref | Medline43. Derr, K., Zou, J., Luo, K., et al. Fully Three-Dimensional Bioprinted Skin Equivalent Constructs with Validated Morphology and Barrier Function. Tissue Eng. Part C Methods 2019, 25, 334–343.
Google Scholar | Crossref | Medline44. Ramiah Rajasekaran, P., Chapin, A. A., Quan, D. N., et al. 3D-Printed Electrochemical Sensor-Integrated Transwell Systems. Microsyst. Nanoeng. 2020, 6, 100.
Google Scholar | Crossref45. Anguiano, M., Castilla, C., Maška, M., et al. Characterization of Three-Dimensional Cancer Cell Migration in Mixed Collagen-Matrigel Scaffolds Using Microfluidics and Image Analysis. PLoS One 2017, 12, e0171417.
Google Scholar | Crossref | Medline46. Montesanto, S., Smithers, N. P., Bucchieri, F., et al. Establishment of a Pulmonary Epithelial Barrier on Biodegradable Poly-l-Lactic-Acid Membranes. PLoS One 2019, 14, e0210830.
Google Scholar | Crossref | Medline47. Booij, T. H., Price, L. S., Danen, E. H. J. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis. SLAS Discov. 2019, 24, 615–627.
Google Scholar | Medline48. Carragher, N., Piccinini, F., Tesei, A., et al. Concerns, Challenges and Promises of High-Content Analysis of 3D Cellular Models. Nat. Rev. Drug Discov. 2018, 17, 606.
Google Scholar | Crossref | Medline49. Boutin, M. E., Voss, T. C., Titus, S. A., et al. A High-Throughput Imaging and Nuclear Segmentation Analysis Protocol for Cleared 3D Culture Models. Sci. Rep. 2018, 8, 11135.
Google Scholar | Crossref | Medline50. Dingle, Y. T. L., Liaudanskaya, V., Finnegan, L. T., et al. Functional Characterization of Three-Dimensional Cortical Cultures for In Vitro Modeling of Brain Networks. iScience 2020, 23, 101434.
Google Scholar | Crossref | Medline51. Ishikawa, K., Yoshida, K., Kanie, K., et al. Morphology-Based Analysis of Myoblasts for Prediction of Myotube Formation. SLAS Discov. 2019, 24, 47–56.
Google Scholar | Medline52. Padi, S., Manescu, P., Schaub, N., et al. Comparison of Artificial Intelligence Based Approaches to Cell Function Prediction. Informatics Med. Unlocked 2020, 18, 100270.
Google Scholar | Crossref53. Schaub, N. J., Hotaling, N. A., Manescu, P., et al. Deep Learning Predicts Function of Live Retinal Pigment Epithelium from Quantitative Microscopy. J. Clin. Invest. 2020, 130, 1010–1023.
Google Scholar | Crossref | Medline54. Obermeier, B., Verma, A., Ransohoff, R. M. The Blood-Brain Barrier. Handb. Clin. Neurol. 2016, 133, 39–59.
Google Scholar |

留言 (0)

沒有登入
gif