1.
Taylor, P., Radic, Z. The Cholinesterases—From Genes to Proteins. Annu. Rev. Pharmacol. 1994, 34, 281–320.
Google Scholar |
Crossref2.
Chatonnet, A., Lockridge, O. Comparison of Butyrylcholinesterase and Acetylcholinesterase. Biochem. J. 1989, 260, 625–634.
Google Scholar |
Crossref |
Medline3.
Li, B., Sedlacek, M., Manoharan, I., et al. Butyrylcholinesterase, Paraoxonase, and Albumin Esterase, but Not Carboxylesterase, Are Present in Human Plasma. Biochem. Pharmacol. 2005, 70, 1673–1684.
Google Scholar |
Crossref |
Medline4.
Zhan, C. G., Zheng, F., Landry, D. W. Fundamental Reaction Mechanism for Cocaine Hydrolysis in Human Butyrylcholinesterase. J. Am. Chem. Soc. 2003, 125, 2462–2474.
Google Scholar |
Crossref |
Medline5.
Lockridge, O. Genetic Variants of Human Serum Cholinesterase Influence Metabolism of the Muscle Relaxant Succinylcholine. Pharmacol. Ther. 1990, 47, 35–60.
Google Scholar |
Crossref |
Medline6.
Chen, V. P., Gao, Y., Geng, L., et al. Plasma Butyrylcholinesterase Regulates Ghrelin to Control Aggression. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 2251–2256.
Google Scholar |
Crossref |
Medline7.
Darvesh, S., Walsh, R., Kumar, R., et al. Inhibition of Human Cholinesterases by Drugs Used to Treat Alzheimer Disease. Alzheimer Dis. Assoc. Disord. 2003, 17, 117–126.
Google Scholar |
Crossref |
Medline8.
Li, Q., Yang, H. Y., Chen, Y., et al. Recent Progress in the Identification of Selective Butyrylcholinesterase Inhibitors for Alzheimer’s Disease. Eur. J. Med. Chem. 2017, 132, 294–309.
Google Scholar |
Crossref |
Medline9.
Greig, N. H., Utsuki, T., Ingram, D. K., et al. Selective Butyrylcholinesterase Inhibition Elevates Brain Acetylcholine, Augments Learning and Lowers Alzheimer β-Amyloid Peptide in Rodent. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 17213–17218.
Google Scholar |
Crossref |
Medline10.
Diamant, S., Podoly, E., Friedler, A., et al. Butyrylcholinesterase Attenuates Amyloid Fibril Formation In Vitro. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 8628–8633.
Google Scholar |
Crossref |
Medline11.
Guillozet, A. L., Smiley, J. F., Mash, D. C., et al. Butyrylcholinesterase in the Life Cycle of Amyloid Plaques. Ann. Neurol. 1997, 42, 909–918.
Google Scholar |
Crossref |
Medline12.
Giacobini, E. Selective Inhibitors of Butyrylcholinesterase: A Valid Alternative for Therapy of Alzheimer’s Disease? Drugs Aging 2001, 18, 891–898.
Google Scholar |
Crossref |
Medline13.
Kovarik, Z., Radic, Z., Grgas, B., et al. Amino Acid Residues Involved in the Interaction of Acetylcholinesterase and Butyrylcholinesterase with the Carbamates Ro 02-0683 and Bambuterol, and with Terbutaline. Biochim. Biophys. Acta 1999, 1433, 261–271.
Google Scholar |
Crossref |
Medline14.
Brus, B., Kosak, U., Turk, S., et al. Discovery, Biological Evaluation, and Crystal Structure of a Novel Nanomolar Selective Butyrylcholinesterase Inhibitor. J. Med. Chem. 2014, 57, 8167–8179.
Google Scholar |
Crossref |
Medline15.
Kosak, U., Brus, B., Knez, D., et al. Development of an In-Vivo Active Reversible Butyrylcholinesterase Inhibitor. Sci. Rep. 2016, 6, 39495.
Google Scholar |
Crossref |
Medline16.
Al-Aboudi, A., Odeh, H., Khalid, A., et al. Butyrylcholinesterase Inhibitory Activity of Testosterone and Some of Its Metabolites. J. Enzyme Inhib. Med. Chem. 2009, 24, 553–558.
Google Scholar |
Crossref |
Medline17.
Stojan, J., Golicnik, M., Froment, M. T., et al. Concentration-Dependent Reversible Activation-Inhibition of Human Butyrylcholinesterase by Tetraethylammonium Ion. Eur. J. Biochem. 2002, 269, 1154–1161.
Google Scholar |
Crossref |
Medline18.
Masson, P., Froment, M. T., Gillon, E., et al. Kinetic Analysis of Effector Modulation of Butyrylcholinesterase-Catalysed Hydrolysis of Acetanilides and Homologous Esters. FEBS J. 2008, 275, 2617–2631.
Google Scholar |
Crossref |
Medline19.
Giacobini, E. Cholinesterase Inhibitors Stabilize Alzheimer’s Disease. Ann. N.Y. Acad. Sci. 2000, 920, 321–327.
Google Scholar |
Crossref |
Medline20.
Huang, R., Southall, N., Wang, Y., et al. The NCGC Pharmaceutical Collection: A Comprehensive Resource of Clinically Approved Drugs Enabling Repurposing and Chemical Genomics. Sci. Transl. Med. 2011, 3, 80ps16.
Google Scholar |
Crossref21.
Li, S., Zhao, J., Huang, R., et al. Use of High-Throughput Enzyme-Based Assay with Xenobiotic Metabolic Capability to Evaluate the Inhibition of Acetylcholinesterase Activity by Organophosphorous Pesticides. Toxicol. In Vitro 2019, 56, 93–100.
Google Scholar |
Crossref |
Medline22.
Yang, C., Tarkhov, A., Marusczyk, J., et al. New Publicly Available Chemical Query Language, CSRML, to Support Chemotype Representations for Application to Data Mining and Modeling. J. Chem. Inf. Model. 2015, 55, 510–528.
Google Scholar |
Crossref |
Medline23.
Nachon, F., Carletti, E., Ronco, C., et al. Crystal Structures of Human Cholinesterases in Complex with Huprine W and Tacrine: Elements of Specificity for Anti-Alzheimer’s Drugs Targeting Acetyl- and Butyryl-Cholinesterase. Biochem. J. 2013, 453, 393–399.
Google Scholar |
Crossref |
Medline24.
Trott, O., Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31, 455–461.
Google Scholar |
Medline25.
Huang, R. A Quantitative High-Throughput Screening Data Analysis Pipeline for Activity Profiling. Methods Mol. Biol. 2016, 1473, 111–122.
Google Scholar |
Crossref |
Medline26.
Inglese, J., Auld, D. S., Jadhav, A., et al. Quantitative High-Throughput Screening: A Titration-Based Approach That Efficiently Identifies Biological Activities in Large Chemical Libraries. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 11473–11478.
Google Scholar |
Crossref |
Medline27.
Wang, Y., Huang, R. Correction of Microplate Data from High-Throughput Screening. Methods Mol. Biol. 2016, 1473, 123–134.
Google Scholar |
Crossref |
Medline28.
Wang, Y., Jadhav, A., Southal, N., et al. A Grid Algorithm for High Throughput Fitting of Dose-Response Curve Data. Curr. Chem. Genomics 2010, 4, 57–66.
Google Scholar |
Crossref |
Medline29.
Haas, J. V., Eastwood, B. J., Iversen, P. W., et al. Minimum Significant Ratio—A Statistic to Assess Assay Variability. In Assay Guidance Manual; Markossian, S., Sittampalam, G. S., Grossman, A., et al., Eds.; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, 2004.
Google Scholar30.
Camarri, E. Fenoverine: Smooth Muscle Synchronizer for the Management of Gastro-Intestinal Conditions. II. A Trimebutine-Controlled, Double-Blind, Crossover Clinical Evaluation. Curr. Med. Res. Opin. 1986, 10, 52–57.
Google Scholar |
Crossref |
Medline31.
Wittmann, T., Paradowski, L., Ducrotte, P., et al. Clinical Trial: The Efficacy of Alverine Citrate/Simeticone Combination on Abdominal Pain/Discomfort in Irritable Bowel Syndrome—A Randomized, Double-Blind, Placebo-Controlled Study. Aliment. Pharmacol. Ther. 2010, 31, 615–624.
Google Scholar |
Crossref |
Medline32.
Messoussi, A., Feneyrolles, C., Bros, A., et al. Recent Progress in the Design, Study, and Development of c-Jun N-Terminal Kinase Inhibitors as Anticancer Agents. Chem. Biol. 2014, 21, 1433–1443.
Google Scholar |
Crossref |
Medline33.
Kuramoto, K., Yamamoto, M., Suzuki, S., et al. AS602801, an Anti-Cancer Stem Cell Drug Candidate, Suppresses Gap-Junction Communication between Lung Cancer Stem Cells and Astrocytes. Anticancer Res. 2018, 38, 5093–5099.
Google Scholar |
Crossref |
Medline34.
Brodbeck, R. M., Cortright, D. N., Kieltyka, A. P., et al. Identification and Characterization of NDT 9513727 [N,N-Bis(1,3-benzodioxol-5-ylmethyl)-1-butyl-2,4-diphenyl-1H-imidazole-5-methanamine], a Novel, Orally Bioavailable C5a Receptor Inverse Agonist. J. Pharmacol. Exp. Ther. 2008, 327, 898–909.
Google Scholar |
Crossref |
Medline35.
Shinn, P., Chen, L., Ferrer, M., et al. High-Throughput Screening for Drug Combinations. In Bioinformatics and Drug Discovery; Springer: Berlin, 2019; pp 11–35.
Google Scholar |
Crossref36.
Makhaeva, G. F., Lushchekina, S. V., Boltneva, N. P., et al. 9-Substituted Acridine Derivatives as Acetylcholinesterase and Butyrylcholinesterase Inhibitors Possessing Antioxidant Activity for Alzheimer’s Disease Treatment. Bioorg. Med. Chem. 2017, 25, 5981–5994.
Google Scholar |
Crossref |
Medline37.
Darvesh, S., Darvesh, K. V., McDonald, R. S., et al. Carbamates with Differential Mechanism of Inhibition toward Acetylcholinesterase and Butyrylcholinesterase. J. Med. Chem. 2008, 51, 4200–4212.
Google Scholar |
Crossref |
Medline38.
Rodriguez-Franco, M. I., Fernandez-Bachiller, M. I., Perez, C., et al. Design and Synthesis of N-Benzylpiperidine-Purine Derivatives as New Dual Inhibitors of Acetyl- and Butyrylcholinesterase. Bioorg. Med. Chem. 2005, 13, 6795–6802.
Google Scholar |
Crossref |
Medline39.
Harrison, B. A., Almstead, Z. Y., Burgoon, H., et al. Discovery and Development of LX7101, a Dual LIM-Kinase and ROCK Inhibitor for the Treatment of Glaucoma. ACS Med. Chem. Lett. 2015, 6, 84–88.
Google Scholar |
Crossref |
Medline40.
Heck, A. M., Yanovski, J. A., Calis, K. A. Orlistat, a New Lipase Inhibitor for the Management of Obesity. Pharmacotherapy 2000, 20, 270–279.
Google Scholar |
Crossref |
Medline41.
Rosenberry, T. L., Brazzolotto, X., Macdonald, I. R., et al. Comparison of the Binding of Reversible Inhibitors to Human Butyrylcholinesterase and Acetylcholinesterase: A Crystallographic, Kinetic and Calorimetric Study. Molecules 2017, 22, 2098.
Google Scholar |
Crossref42.
Sussman, J. L., Harel, M., Frolow, F., et al. Atomic Structure of Acetylcholinesterase from Torpedo californica: A Prototypic Acetylcholine-Binding Protein. Science 1991, 253, 872–879.
Google Scholar |
Crossref |
Medline43.
Vellom, D. C., Radic, Z., Li, Y., et al. Amino Acid Residues Controlling Acetylcholinesterase and Butyrylcholinesterase Specificity. Biochemistry 1993, 32, 12–17.
Google Scholar |
Crossref |
Medline
留言 (0)