High-Throughput Screening to Identify Small Molecules That Selectively Inhibit APOL1 Protein Level in Podocytes

1. Perez-Morga, D., Vanhollebeke, B., Paturiaux-Hanocq, F., et al. Apolipoprotein L-I Promotes Trypanosome Lysis by Forming Pores in Lysosomal Membranes. Science 2005, 309, 469–472.
Google Scholar | Crossref | Medline2. Shukha, K., Mueller, J. L., Chung, R. T., et al. Most ApoL1 Is Secreted by the Liver. J. Am. Soc. Nephrol. 2017, 28, 1079–1083.
Google Scholar | Crossref | Medline3. Genovese, G., Friedman, D. J., Ross, M. D., et al. Association of Trypanolytic ApoL1 Variants with Kidney Disease in African Americans. Science 2010, 329, 841–845.
Google Scholar | Crossref | Medline4. Freedman, B. I., Kopp, J. B., Langefeld, C. D., et al. The Apolipoprotein L1 (APOL1) Gene and Nondiabetic Nephropathy in African Americans. J. Am. Soc. Nephrol. 2010, 21, 1422–1426.
Google Scholar | Crossref | Medline5. Papeta, N., Kiryluk, K., Patel, A., et al. APOL1 Variants Increase Risk for FSGS and HIVAN but Not IgA Nephropathy. J. Am. Soc. Nephrol. 2011, 22, 1991–1996.
Google Scholar | Crossref | Medline6. Fine, D. M., Wasser, W. G., Estrella, M. M., et al. APOL1 risk Variants Predict Histopathology and Progression to ESRD in HIV-Related Kidney Disease. J. Am. Soc. Nephrol. 2012, 23, 343–350.
Google Scholar | Crossref | Medline7. Kopp, J. B., Nelson, G. W., Sampath, K., et al. APOL1 Genetic Variants in Focal Segmental Glomerulosclerosis and HIV-Associated Nephropathy. J. Am. Soc. Nephrol. 2011, 22, 2129–2137.
Google Scholar | Crossref | Medline8. Freedman, B. I., Julian, B. A., Pastan, S. O., et al. Apolipoprotein L1 Gene Variants in Deceased Organ Donors Are Associated with Renal Allograft Failure. Am. J. Transplant. 2015, 15, 1615–1622.
Google Scholar | Crossref | Medline9. Freedman, B. I., Locke, J. E., Reeves-Daniel, A. M., et al. Apolipoprotein L1 Gene Effects on Kidney Transplantation. Semin. Nephrol. 2017, 37, 530–537.
Google Scholar | Crossref | Medline10. Kozlitina, J., Zhou, H., Brown, P. N., et al. Plasma Levels of Risk-Variant APOL1 Do Not Associate with Renal Disease in a Population-Based Cohort. J. Am. Soc. Nephrol. 2016, 27, 3204–3219.
Google Scholar | Crossref | Medline11. Beckerman, P., Bi-Karchin, J., Park, A. S., et al. Transgenic Expression of Human APOL1 Risk Variants in Podocytes Induces Kidney Disease in Mice. Nat. Med. 2017, 23, 429–438.
Google Scholar | Crossref | Medline12. Johnstone, D. B., Shegokar, V., Nihalani, D., et al. APOL1 Null Alleles from a Rural Village in India Do Not Correlate with Glomerulosclerosis. PLoS One 2012, 7, e51546.
Google Scholar | Crossref13. Londregan, A. T., Wei, L., Xiao, J., et al. Small Molecule Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors: Hit to Lead Optimization of Systemic Agents. J. Med. Chem. 2018, 61, 5704–5718.
Google Scholar | Crossref | Medline14. Petersen, D. N., Hawkins, J., Ruangsiriluk, W., et al. A Small-Molecule Anti-Secretagogue of PCSK9 Targets the 80S Ribosome to Inhibit PCSK9 Protein Translation. Cell Chem. Biol. 2016, 23, 1362–1371.
Google Scholar | Crossref | Medline15. McClure, K. F., Piotrowski, D. W., Petersen, D., et al. Liver-Targeted Small-Molecule Inhibitors of Proprotein Convertase Subtilisin/Kexin Type 9 Synthesis. Angew. Chem. Int. Ed. 2017, 56, 16218–16222.
Google Scholar | Crossref | Medline16. Zhou, H., Hoek, M., Yi, P., et al. Rapid Detection and Quantification of Apolipoprotein L1 Genetic Variants and Total Levels in Plasma by Ultra-Performance Liquid Chromatography/Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 2639–2647.
Google Scholar | Crossref | Medline17. Iversen, P. W., Beck, B., Chen, Y. F., et al. HTS Assay Validation. In Assay Guidance Manual, Markossian, S., Sittampalam, G. S, Grossman, A, et al. Eds. Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, 2004.
Google Scholar18. Zhang, J. H., Chung, T. D., Oldenburg, K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen. 1999, 4, 67–73.
Google Scholar | SAGE Journals19. Brideau, C., Gunter, B., Pikounis, B., et al. Improved Statistical Methods for Hit Selection in High-Throughput Screening. J. Biomol. Screen. 2003, 8, 634–647.
Google Scholar | SAGE Journals20. Degorce, F., Card, A., Soh, S., et al. HTRF: A Technology Tailored for Drug Discovery—A Review of Theoretical Aspects and Recent Applications. Curr. Chem. Genomics 2009, 3, 22–32.
Google Scholar | Crossref | Medline21. Galindo-Moreno, J., Iurlaro, R., El Mjiyad, N., et al. Apolipoprotein L2 Contains a BH3-Like Domain but It Does Not Behave as a BH3-Only Protein. Cell Death Dis. 2014, 5, e1275.
Google Scholar | Crossref22. Baliga, B. S., Pronczuk, A. W., Munro, H. N. Mechanism of Cycloheximide Inhibition of Protein Synthesis in a Cell-Free System Prepared from Rat Liver. J. Biol. Chem. 1969, 244, 4480–4489.
Google Scholar | Crossref | Medline23. Visscher, P. M., Wray, N. R., Zhang, Q., et al. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22.
Google Scholar | Crossref | Medline24. Dhuri, K., Bechtold, C., Quijano, E., et al. Antisense Oligonucleotides: An Emerging Area in Drug Discovery and Development. J. Clin. Med. 2020, 9, 2004.
Google Scholar | Crossref | Medline25. Aghajan, M., Booten, S. L., Althage, M., et al. Antisense Oligonucleotide Treatment Ameliorates IFN-Gamma-Induced Proteinuria in APOL1-Transgenic Mice. JCI Insight 2019, 4, e126124.
Google Scholar | Crossref | Medline26. Lai, A. C., Crews, C. M. Induced Protein Degradation: An Emerging Drug Discovery Paradigm. Nat. Rev. Drug Discov. 2017, 16, 101–114.
Google Scholar | Crossref | Medline27. Lim, K. R. Q., Yokota, T. Invention and Early History of Exon Skipping and Splice Modulation. Methods Mol. Biol. 2018, 1828, 3–30.
Google Scholar | Crossref | Medline28. Reiner, A. P., Susztak, K. APOL1 Variants: From Parasites to Kidney Function to Cardiovascular Disease. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 219–220.
Google Scholar | Crossref | Medline29. Thomson, R., Finkelstein, A. Human Trypanolytic Factor APOL1 Forms pH-Gated Cation-Selective Channels in Planar Lipid Bilayers: Relevance to Trypanosome Lysis. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 2894–2899.
Google Scholar | Crossref | Medline30. Vertex Pharmaceeuticals Incorporated. A Phase 2a, Open-Label, Single-Arm, 2-Part Study to Evaluate the Efficacy, Safety, and Pharmacokinetics of VX-147 in Adults with APOL1-Mediated Focal Segmental Glomerulosclerosis. NCT04340362 . https://clinicaltrials.gov/ct2/show/NCT04340362 (accessed June 19, 2021).
Google Scholar31. Cao, J. C., Come, J. H., Dakin, L. A., et al. Inhibitors of ApoL1 and Methods of Using Same. Patent WO/2020/131807, June 25, 2020.
Google Scholar32. Heymann, J., Winkler, C. A., Hoek, M., et al. Therapeutics for APOL1 Nephropathies: Putting Out the Fire in the Podocyte. Nephrol. Dial. Transplant. 2017, 32, i65–i70.
Google Scholar | Crossref | Medline33. Lan, X., Jhaveri, A., Cheng, K., et al. APOL1 Risk Variants Enhance Podocyte Necrosis through Compromising Lysosomal Membrane Permeability. Am. J. Physiol. Renal Physiol. 2014, 307, F326–F336.
Google Scholar | Crossref | Medline34. Olabisi, O. A., Zhang, J. Y., VerPlank, L., et al. APOL1 Kidney Disease Risk Variants Cause Cytotoxicity by Depleting Cellular Potassium and Inducing Stress-Activated Protein Kinases. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 830–837.
Google Scholar | Crossref | Medline35. Ma, L., Divers, J., Freedman, B. I. Mechanisms of Injury in APOL1-Associated Kidney Disease. Transplantation 2019, 103, 487–492.
Google Scholar | Crossref | Medline36. Williams, R. D., Elliott, A. Y., Stein, N., et al. In Vitro Cultivation of Human Renal Cell Cancer. II. Characterization of Cell Lines. In Vitro 1978, 14, 779–786.
Google Scholar | Crossref | Medline37. Giaccia, A. J., Kastan, M. B. The Complexity of p53 Modulation: Emerging Patterns from Divergent Signals. Genes Dev. 1998, 12, 2973–2983.
Google Scholar | Crossref | Medline38. Ma, L., Shelness, G. S., Snipes, J. A., et al. Localization of APOL1 Protein and mRNA in the Human Kidney: Nondiseased Tissue, Primary Cells, and Immortalized Cell Lines. J. Am. Soc. Nephrol. 2015, 26, 339–348.
Google Scholar | Crossref | Medline39. Lee, H. W., Khan, S. Q., Faridi, M. H., et al. A Podocyte-Based Automated Screening Assay Identifies Protective Small Molecules. J. Am. Soc. Nephrol. 2015, 26, 2741–2752.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif