Probing the SAM Binding Site of SARS-CoV-2 Nsp14 In Vitro Using SAM Competitive Inhibitors Guides Developing Selective Bisubstrate Inhibitors

1. Zhu, N., Zhang, D., Wang, W.; et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733.
Google Scholar | Crossref | Medline2. Adams, M. J., Lefkowitz, E. J., King, A. M.; et al. Ratification Vote on Taxonomic Proposals to the International Committee on Taxonomy of Viruses (2016). Arch. Virol. 2016, 161, 2921–2949.
Google Scholar | Crossref | Medline3. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses . The Species Severe Acute Respiratory Syndrome-Related Coronavirus: Classifying 2019-nCoV and Naming It SARS-CoV-2. Nat. Microbiol. 2020, 5, 536–544.
Google Scholar | Crossref | Medline4. Chan-Yeung, M., Xu, R. H. SARS: Epidemiology. Respirology 2003, 8 (Suppl.), S9–S14.
Google Scholar | Crossref | Medline5. Zaki, A. M., van Boheemen, S., Bestebroer, T. M.; et al. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820.
Google Scholar | Crossref | Medline6. Chan, J. F., Kok, K. H., Zhu, Z.; et al. Genomic Characterization of the 2019 Novel Human-Pathogenic Coronavirus Isolated from a patient with Atypical Pneumonia after Visiting Wuhan. Emerg. Microbes Infect. 2020, 9, 221–236.
Google Scholar | Crossref | Medline7. van Boheemen, S, de Graaf, M., Lauber, C.; et al. Genomic Characterization of a Newly Discovered Coronavirus Associated with Acute Respiratory Distress Syndrome in Humans. mBio 2012, 3, e00473-12.
Google Scholar | Crossref | Medline8. Chen, Y., Liu, Q., Guo, D. Emerging Coronaviruses: Genome Structure, Replication, and Pathogenesis. J. Med. Virol. 2020, 92, 418–423.
Google Scholar | Crossref | Medline9. Baez-Santos, Y. M., St John, S. E., Mesecar, A. D. The SARS-Coronavirus Papain-Like Protease: Structure, Function and Inhibition by Designed Antiviral Compounds. Antiviral Res. 2015, 115, 21–38.
Google Scholar | Crossref | Medline10. Chen, Y., Guo, D. Molecular Mechanisms of Coronavirus RNA Capping and Methylation. Virol. Sin. 2016, 31, 3–11.
Google Scholar | Crossref | Medline11. Eckerle, L. D., Becker, M. M., Halpin, R. A.; et al. Infidelity of SARS-CoV Nsp14-Exonuclease Mutant Virus Replication Is Revealed by Complete Genome Sequencing. PLoS Pathog. 2010, 6, e1000896.
Google Scholar | Crossref | Medline12. Bouvet, M., Imbert, I., Subissi, L.; et al. RNA 3′-End Mismatch Excision by the Severe Acute Respiratory Syndrome Coronavirus Nonstructural Protein Nsp10/Nsp14 Exoribonuclease Complex. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 9372–9377.
Google Scholar | Crossref | Medline13. Smith, E. C., Case, J. B., Blanc, H.; et al. Mutations in Coronavirus Nonstructural Protein 10 Decrease Virus Replication Fidelity. J. Virol. 2015, 89, 6418–6426.
Google Scholar | Crossref | Medline14. Subissi, L., Posthuma, C. C., Collet, A.; et al. One Severe Acute Respiratory Syndrome Coronavirus Protein Complex Integrates Processive RNA Polymerase and Exonuclease Activities. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, E3900–E3909.
Google Scholar | Crossref | Medline15. Decroly, E., Debarnot, C., Ferron, F.; et al. Crystal Structure and Functional Analysis of the SARS-Coronavirus RNA Cap 2′-O-Methyltransferase Nsp10/Nsp16 Complex. PLoS Pathog. 2011, 7, e1002059.
Google Scholar | Crossref | Medline16. Bouvet, M., Debarnot, C., Imbert, I.; et al. In Vitro Reconstitution of SARS-Coronavirus mRNA Cap Methylation. PLoS Pathog. 2010, 6, e1000863.
Google Scholar | Crossref | Medline17. Chen, Y., Cai, H., Pan, J.; et al. Functional Screen Reveals SARS Coronavirus Nonstructural Protein Nsp14 as a Novel Cap N7 Methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 3484–3489.
Google Scholar | Crossref | Medline18. Marcotrigiano, J., Gingras, A. C., Sonenberg, N.; et al. Cocrystal Structure of the Messenger RNA 5′ Cap-Binding Protein (eIF4E) Bound to 7-Methyl-GDP. Cell 1997, 89, 951–961.
Google Scholar | Crossref | Medline19. Decroly, E., Ferron, F., Lescar, J.; et al. Conventional and Unconventional Mechanisms for Capping Viral mRNA. Nat. Rev. Microbiol. 2011, 10, 51–65.
Google Scholar | Crossref | Medline20. Ivanov, K. A., Ziebuhr, J. Human Coronavirus 229E Nonstructural Protein 13: Characterization of Duplex-Unwinding, Nucleoside Triphosphatase, and RNA 5′-Triphosphatase Activities. J. Virol. 2004, 78, 7833–7838.
Google Scholar | Crossref | Medline21. Ivanov, K. A., Thiel, V., Dobbe, J. C.; et al. Multiple Enzymatic Activities Associated with Severe Acute Respiratory Syndrome Coronavirus Helicase. J. Virol. 2004, 78, 5619–5632.
Google Scholar | Crossref | Medline22. Decroly, E., Imbert, I., Coutard, B.; et al. Coronavirus Nonstructural Protein 16 Is a Cap-0 Binding Enzyme Possessing (Nucleoside-2′O)-Methyltransferase Activity. J. Virol. 2008, 82, 8071–8084.
Google Scholar | Crossref | Medline23. Corman, V. M., Muth, D., Niemeyer, D.; et al. Hosts and Sources of Endemic Human Coronaviruses. Adv. Virus Res. 2018, 100, 163–188.
Google Scholar | Crossref | Medline24. Zhang, J. H., Chung, T. D., Oldenburg, K. R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. J. Biomol. Screen. 1999, 4, 67–73.
Google Scholar | SAGE Journals25. Scheer, S., Ackloo, S., Medina, T. S.; et al. A Chemical Biology Toolbox to Study Protein Methyltransferases and Epigenetic Signaling. Nat. Commun. 2019, 10, 19.
Google Scholar | Crossref | Medline26. Neves, M. A., Totrov, M., Abagyan, R. Docking and Scoring with ICM: The Benchmarking Results and Strategies for Improvement. J. Comput. Aided Mol. Des. 2012, 26, 675–686.
Google Scholar | Crossref | Medline27. Campagna-Slater, V., Mok, M. W., Nguyen, K. T.; et al. Structural Chemistry of the Histone Methyltransferases Cofactor Binding Site. J. Chem. Inf. Model. 2011, 51, 612–623.
Google Scholar | Crossref | Medline28. Ferron, F., Decroly, E., Selisko, B.; et al. The Viral RNA Capping Machinery as a Target for Antiviral Drugs. Antiviral Res. 2012, 96, 21–31.
Google Scholar | Crossref | Medline29. Ferreira, de, Freitas, R., Ivanochko, D., Schapira, M. Methyltransferase Inhibitors: Competing with, or Exploiting the Bound Cofactor. Molecules 2019, 24, 4492.
Google Scholar | Crossref30. Stein, E. M., Garcia-Manero, G., Rizzieri, D. A.; et al. The DOT1L Inhibitor Pinometostat Reduces H3K79 Methylation and Has Modest Clinical Activity in Adult Acute Leukemia. Blood 2018, 131, 2661–2669.
Google Scholar | Crossref | Medline31. Gounder, M., Schoffski, P., Jones, R. L.; et al. Tazemetostat in Advanced Epithelioid Sarcoma with Loss of INI1/SMARCB1: An International, Open-Label, Phase 2 Basket Study. Lancet Oncol. 2020, 21, 1423–1432.
Google Scholar | Crossref | Medline32. Rohman, M., Wingfield, J. High-Throughput Screening Using Mass Spectrometry within Drug Discovery. Methods Mol. Biol. 2016, 1439, 47–63.
Google Scholar | Crossref | Medline33. Haslam, C., Hellicar, J., Dunn, A.; et al. The Evolution of MALDI-TOF Mass Spectrometry toward Ultra-High-Throughput Screening: 1536-Well Format and Beyond. J. Biomol. Screen. 2016, 21, 176–186.
Google Scholar | SAGE Journals34. Winter, M., Ries, R., Kleiner, C.; et al. Automated MALDI Target Preparation Concept: Providing Ultra-High-Throughput Mass Spectrometry-Based Screening for Drug Discovery. SLAS Technol. 2019, 24, 209–221.
Google Scholar | Abstract35. Janzen, W. P. Screening Technologies for Small Molecule Discovery: The State of the Art. Chem. Biol. 2014, 21, 1162–1170.
Google Scholar | Crossref | Medline36. Yu, W., Chory, E. J., Wernimont, A. K.; et al. Catalytic Site Remodelling of the DOT1L Methyltransferase by Selective Inhibitors. Nat. Commun. 2012, 3, 1288.
Google Scholar | Crossref37. Daigle, S. R., Olhava, E. J., Therkelsen, C. A.; et al. Selective Killing of Mixed Lineage Leukemia Cells by a Potent Small-Molecule DOT1L Inhibitor. Cancer Cell 2011, 20, 53–65.
Google Scholar | Crossref | Medline38. Konze, K. D., Ma, A., Li, F.; et al. An Orally Bioavailable Chemical Probe of the Lysine Methyltransferases EZH2 and EZH1. ACS Chem. Biol. 2013, 8, 1324–1334.
Google Scholar | Crossref | Medline39. Taylor, A. P., Swewczyk, M., Kennedy, S.; et al. Selective, Small-Molecule Co-Factor Binding Site Inhibition of a Su(var)3-9, Enhancer of Zeste, Trithorax Domain Containing Lysine Methyltransferase. J. Med. Chem. 2019, 62, 7669–7683.
Google Scholar | Crossref | Medline40. Ahmed-Belkacem, R., Sutto-Ortiz, P., Guiraud, M.; et al. Synthesis of Adenine Dinucleosides SAM Analogs as Specific Inhibitors of SARS-CoV Nsp14 RNA Cap Guanine-N7-Methyltransferase. Eur. J. Med. Chem. 2020, 201, 112557.
Google Scholar | Crossref | Medline41. Spurr, S. S., Bayle, E. D., Yu, W.; et al. New Small Molecule Inhibitors of Histone Methyl Transferase DOT1L with a Nitrile as a Non-Traditional Replacement for Heavy Halogen Atoms. Bioorg. Med. Chem. Lett. 2016, 26, 4518–4522.
Google Scholar | Crossref | Medline42. Cai, X. C., Zhang, T., Kim, E. J.; et al. A Chemical Probe of CARM1 Alters Epigenetic Plasticity against Breast Cancer Cell Invasion. Elife 2019, 8, e47110.
Google Scholar | Crossref | Medline43. Babault, N., Allali-Hassani, A., Li, F.; et al. Discovery of Bisubstrate Inhibitors of Nicotinamide N-Methyltransferase (NNMT). J. Med. Chem. 2018, 61, 1541–1551.
Google Scholar | Crossref | Medline44. Hong, S., Moreno-Navarrete, J. M., Wei, X.; et al. Nicotinamide N-Methyltransferase Regulates Hepatic Nutrient Metabolism through Sirt1 Protein Stabilization. Nat. Med. 2015, 21, 887–894.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif