1.
Huch, M., Koo, B. K. Modeling Mouse and Human Development Using Organoid Cultures. Development 2015, 142, 3113–3125.
Google Scholar |
Crossref |
Medline2.
Clevers, H. Modeling Development and Disease with Organoids. Cell 2016, 165, 1586–1597.
Google Scholar |
Crossref |
Medline3.
Schutgens, F., Clevers, H. Human Organoids: Tools for Understanding Biology and Treating Diseases. Annu. Rev. Pathol. 2020, 15, 211–234.
Google Scholar |
Crossref |
Medline4.
Gunti, S., Hoke, A. T. K., Vu, K. P., et al. Organoid and Spheroid Tumor Models: Techniques and Applications. Cancers (Basel) 2021, 13, 874.
Google Scholar |
Crossref |
Medline5.
Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., et al. Self-Organized Formation of Polarized Cortical Tissues from ESCs and Its Active Manipulation by Extrinsic Signals. Cell Stem Cell 2008, 3, 519–532.
Google Scholar |
Crossref |
Medline6.
Kim, J., Koo, B. K., Knoblich, J. A. Human Organoids: Model Systems for Human Biology and Medicine. Nat. Rev. Mol. Cell Biol. 2020, 21, 571–584.
Google Scholar |
Crossref |
Medline7.
Imamura, Y., Mukohara, T., Shimono, Y., et al. Comparison of 2D- and 3D-Culture Models as Drug-Testing Platforms in Breast Cancer. Oncol. Rep. 2015, 33, 1837–1843.
Google Scholar |
Crossref |
Medline8.
O’Connell, L., Winter, D. C. Organoids: Past Learning and Future Directions. Stem Cells Dev. 2020, 29, 281–289.
Google Scholar |
Crossref |
Medline9.
Schwank, G., Koo, B. K., Sasselli, V., et al. Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients. Cell Stem Cell 2013, 13, 653–658.
Google Scholar |
Crossref |
Medline10.
Matano, M., Date, S., Shimokawa, M., et al. Modeling Colorectal Cancer Using CRISPR-Cas9-Mediated Engineering of Human Intestinal Organoids. Nat. Med. 2015, 21, 256–262.
Google Scholar |
Crossref |
Medline11.
Drost, J., van Jaarsveld, R. H., Ponsioen, B., et al. Sequential Cancer Mutations in Cultured Human Intestinal Stem Cells. Nature 2015, 521, 43–47.
Google Scholar |
Crossref |
Medline12.
Drost, J., van Boxtel, R., Blokzijl, F., et al. Use of CRISPR-Modified Human Stem Cell Organoids to Study the Origin of Mutational Signatures in Cancer. Science 2017, 358, 234–238.
Google Scholar |
Crossref |
Medline13.
Dekkers, J. F., Whittle, J. R., Vaillant, F., et al. Modeling Breast Cancer Using CRISPR-Cas9-Mediated Engineering of Human Breast Organoids. J. Natl. Cancer Inst. 2020, 112, 540–544.
Google Scholar |
Crossref |
Medline14.
Artegiani, B., van Voorthuijsen, L., Lindeboom, R. G. H., et al. Probing the Tumor Suppressor Function of BAP1 in CRISPR-Engineered Human Liver Organoids. Cell Stem Cell 2019, 24, 927–943.e6.
Google Scholar |
Crossref |
Medline15.
Artegiani, B., Hendriks, D., Beumer, J., et al. Fast and Efficient Generation of Knock-In Human Organoids Using Homology-Independent CRISPR-Cas9 Precision Genome Editing. Nat. Cell Biol. 2020, 22, 321–331.
Google Scholar |
Crossref |
Medline16.
Freedman, B. S., Brooks, C. R., Lam, A. Q., et al. Modelling Kidney Disease with CRISPR-Mutant Kidney Organoids Derived from Human Pluripotent Epiblast Spheroids. Nat. Commun. 2015, 6, 8715.
Google Scholar |
Crossref |
Medline17.
Hofer, M., Lutolf, M. P. Engineering Organoids. Nat. Rev. Mater. 2021, 6, 402–420.
Google Scholar |
Crossref18.
Lancaster, M. A., Knoblich, J. A. Organogenesis in a Dish: Modeling Development and Disease Using Organoid Technologies. Science 2014, 345, 1247125.
Google Scholar |
Crossref |
Medline19.
Daniszewski, M., Crombie, D. E., Henderson, R., et al. Automated Cell Culture Systems and Their Applications to Human Pluripotent Stem Cell Studies. SLAS Technol. 2017, 23, 315–325.
Google Scholar |
Medline20.
Wimmer, R. A., Leopoldi, A., Aichinger, M., et al. Human Blood Vessel Organoids as a Model of Diabetic Vasculopathy. Nature 2019, 565, 505–510.
Google Scholar |
Crossref |
Medline21.
Czerniecki, S. M., Cruz, N. M., Harder, J. L., et al. High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping. Cell Stem Cell 2018, 22, 929–940.e4.
Google Scholar |
Crossref |
Medline22.
Brandenberg, N., Hoehnel, S., Kuttler, F., et al. High-Throughput Automated Organoid Culture via Stem-Cell Aggregation in Microcavity Arrays. Nat. Biomed. Eng. 2020, 4, 863–874.
Google Scholar |
Crossref |
Medline23.
Ruedinger, F., Lavrentieva, A., Blume, C., et al. Hydrogels for 3D Mammalian Cell Culture: A Starting Guide for Laboratory Practice. Appl. Microbiol. Biotechnol. 2015, 99, 623–636.
Google Scholar |
Crossref |
Medline24.
Gjorevski, N., Sachs, N., Manfrin, A., et al. Designer Matrices for Intestinal Stem Cell and Organoid Culture. Nature 2016, 539, 560–564.
Google Scholar |
Crossref |
Medline25.
Zhang, Y. S., Aleman, J., Shin, S. R., et al. Multisensor-Integrated Organs-on-Chips Platform for Automated and Continual In Situ Monitoring of Organoid Behaviors. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, E2293–E2302.
Google Scholar26.
Skardal, A., Murphy, S. V., Devarasetty, M., et al. Multi-Tissue Interactions in an Integrated Three-Tissue Organ-on-a-Chip Platform. Sci. Rep. 2017, 7, 8837.
Google Scholar |
Crossref |
Medline27.
Novak, R., Ingram, M., Marquez, S., et al. Robotic Fluidic Coupling and Interrogation of Multiple Vascularized Organ Chips. Nat. Biomed. Eng. 2020, 4, 407–420.
Google Scholar |
Crossref |
Medline28.
Herland, A., Maoz, B. M., Das, D., et al. Quantitative Prediction of Human Pharmacokinetic Responses to Drugs via Fluidically Coupled Vascularized Organ Chips. Nat. Biomed. Eng. 2020, 4, 421–436.
Google Scholar |
Crossref |
Medline29.
McKernan, R., Watt, F. M. What Is the Point of Large-Scale Collections of Human Induced Pluripotent Stem Cells? Nat. Biotechnol. 2013, 31, 875–877.
Google Scholar |
Crossref |
Medline30.
Furuta, K., Allocca, C. M., Schacter, B., et al. Standardization and Innovation in Paving a Path to a Better Future: An Update of Activities in ISO/TC276/WG2 Biobanks and Bioresources. Biopreserv. Biobank 2018, 16, 23–27.
Google Scholar |
Crossref |
Medline31.
Reichman, S., Slembrouck, A., Gagliardi, G., et al. Generation of Storable Retinal Organoids and Retinal Pigmented Epithelium from Adherent Human iPS Cells in Xeno-Free and Feeder-Free Conditions. Stem Cells 2017, 35, 1176–1188.
Google Scholar |
Crossref |
Medline32.
Clinton, J., McWilliams-Koeppen, P. Initiation, Expansion, and Cryopreservation of Human Primary Tissue-Derived Normal and Diseased Organoids in Embedded Three-Dimensional Culture. Curr. Protoc. Cell Biol. 2019, 82, e66.
Google Scholar |
Crossref |
Medline33.
Linsen, L., Van Landuyt, K., Ectors, N. Automated Sample Storage in Biobanking to Enhance Translational Research: The Bumpy Road to Implementation. Front. Med. (Lausanne) 2019, 6, 309.
Google Scholar |
Crossref |
Medline34.
Dekkers, J. F., Alieva, M., Wellens, L. M., et al. High-Resolution 3D Imaging of Fixed and Cleared Organoids. Nat. Protoc. 2019, 14, 1756–1771.
Google Scholar |
Crossref |
Medline35.
Rios, A. C., Clevers, H. Imaging Organoids: A Bright Future Ahead. Nat. Methods 2018, 15, 24–26.
Google Scholar |
Crossref |
Medline36.
Chen, B. C., Legant, W. R., Wang, K., et al. Lattice Light-Sheet Microscopy: Imaging Molecules to Embryos at High Spatiotemporal Resolution. Science 2014, 346, 1257998.
Google Scholar |
Crossref |
Medline37.
McKinley, K. L., Stuurman, N., Royer, L. A., et al. Cellular Aspect Ratio and Cell Division Mechanics Underlie the Patterning of Cell Progeny in Diverse Mammalian Epithelia. Elife 2018, 7, e36739.
Google Scholar |
Crossref |
Medline38.
Legland, D., Arganda-Carreras, I., Andrey, P. MorphoLibJ: Integrated Library and Plugins for Mathematical Morphology with ImageJ. Bioinformatics 2016, 32, 3532–3534.
Google Scholar |
Medline39.
Borten, M. A., Bajikar, S. S., Sasaki, N., et al. Automated Brightfield Morphometry of 3D Organoid Populations by OrganoSeg. Sci. Rep. 2018, 8, 5319.
Google Scholar |
Crossref |
Medline40.
Schindelin, J., Arganda-Carreras, I., Frise, E., et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682.
Google Scholar |
Crossref |
Medline41.
Normanno, N., Tejpar, S., Morgillo, F., et al. Implications for KRAS Status and EGFR-Targeted Therapies in Metastatic CRC. Nat. Rev. Clin. Oncol. 2009, 6, 519–527.
Google Scholar |
Crossref |
Medline42.
Raponi, M., Winkler, H., Dracopoli, N. C. KRAS Mutations Predict Response to EGFR Inhibitors. Curr. Opin. Pharmacol. 2008, 8, 413–418.
Google Scholar |
Crossref |
Medline43.
Bulin, A. L., Broekgaarden, M., Hasan, T. Comprehensive High-Throughput Image Analysis for Therapeutic Efficacy of Architecturally Complex Heterotypic Organoids. Sci. Rep. 2017, 7, 16645.
Google Scholar |
Crossref |
Medline44.
Skylaki, S., Hilsenbeck, O., Schroeder, T. Challenges in Long-Term Imaging and Quantification of Single-Cell Dynamics. Nat. Biotechnol. 2016, 34, 1137–1144.
Google Scholar |
Crossref |
Medline45.
Laissue, P. P., Alghamdi, R. A., Tomancak, P., et al. Assessing Phototoxicity in Live Fluorescence Imaging. Nat. Methods 2017, 14, 657–661.
Google Scholar |
Crossref |
Medline46.
Icha, J., Weber, M., Waters, J. C., et al. Phototoxicity in Live Fluorescence Microscopy, and How to Avoid It. Bioessays 2017, 39, 1700003.
Google Scholar |
Crossref47.
Tomer, R., Khairy, K., Amat, F., et al. Quantitative High-Speed Imaging of Entire Developing Embryos with Simultaneous Multiview Light-Sheet Microscopy. Nat. Methods 2012, 9, 755–763.
Google Scholar |
Crossref |
Medline48.
Denk, W., Strickler, J. H., Webb, W. W. Two-Photon Laser Scanning Fluorescence Microscopy. Science 1990, 248, 73–76.
Google Scholar |
Crossref |
Medline49.
Scholler, J., Groux, K., Goureau, O., et al. Dynamic Full-Field Optical Coherence Tomography: 3D Live-Imaging of Retinal Organoids. Light Sci. Appl. 2020, 9, 140.
Google Scholar |
Crossref |
Medline50.
Bayarmagnai, B., Perrin, L., Esmaeili Pourfarhangi, K., et al. Intravital Imaging of Tumor Cell Motility in the Tumor Microenvironment Context. Methods Mol. Biol. 2018, 1749, 175–193.
Google Scholar |
Crossref |
Medline51.
Krzic, U., Gunther, S., Saunders, T. E., et al. Multiview Light-Sheet Microscope for Rapid In Toto Imaging. Nat. Methods 2012, 9, 730–733.
Google Scholar |
Crossref |
Medline52.
Wang, K., Milkie, D. E., Saxena, A., et al. Rapid Adaptive Optical Recovery of Optimal Resolution over Large Volumes. Nat. Methods 2014, 11, 625–628.
留言 (0)