Evaluating Very Deep Convolutional Neural Networks for Nucleus Segmentation from Brightfield Cell Microscopy Images

1. Angermueller, C., Pärnamaa, T., Parts, L., et al. Deep Learning for Computational Biology. Mol. Syst. Biol. 2016, 12, 878.
Google Scholar | Crossref | Medline2. Bolón-Canedo, V., Remeseiro, B. Feature Selection in Image Analysis: A Survey. Artif. Intell. Rev. 2020, 53, 2905–2931.
Google Scholar | Crossref3. Gómez-de-Mariscal, E., Maška, M., Kotrbová, A., et al. Deep-Learning-Based Segmentation of Small Extracellular Vesicles in Transmission Electron Microscopy Images. Sci. Rep. 2019, 9, 13211.
Google Scholar | Crossref | Medline4. Caicedo, J. C., Roth, J., Goodman, A., et al. Evaluation of Deep Learning Strategies for Nucleus Segmentation in Fluorescence Images. Cytometry A 2019, 95, 952–965.
Google Scholar | Crossref | Medline5. Fishman, D., Salumaa, S.-O., Majoral, D., et al. Segmenting Nuclei in Brightfield Images with Neural Networks. bioRxiv 2019. DOI: 10.1101/764894.
Google Scholar | Crossref6. Krizhevsky, A., Sutskever, I., Hinton, G. E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 2017, 60, 84–90.
Google Scholar | Crossref7. Redmon, J., Divvala, S., Girshick, R., et al. You Only Look Once: Unified, Real-Time Object Detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, ; pp 779–788.
Google Scholar8. Chen, L.-C., Papandreou, G., Kokkinos, I., et al. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848.
Google Scholar | Crossref | Medline9. Jones, W., Alasoo, K., Fishman, D., et al. Computational Biology: Deep Learning. Emerg. Top. Life Sci. 2017, 1, 257–274.
Google Scholar | Crossref | Medline10. Moen, E., Bannon, D., Kudo, T., et al. Deep Learning for Cellular Image Analysis. Nat. Methods 2019, 16, 1233–1246.
Google Scholar | Crossref | Medline11. Madabhushi, A., Lee, G. Image Analysis and Machine Learning in Digital Pathology: Challenges and Opportunities. Med. Image Anal. 2016, 33, 170–175.
Google Scholar | Crossref | Medline12. Van Valen, D. A., Kudo, T., Lane, K. M., et al. Deep Learning Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments. PLoS Comput. Biol. 2016, 12, e1005177.
Google Scholar | Crossref | Medline13. Xie, L., Qi, J., Pan, L., et al. Integrating Deep Convolutional Neural Networks with Marker-Controlled Watershed for Overlapping Nuclei Segmentation in Histopathology Images. Neurocomputing 2020, 376, 166–179.
Google Scholar | Crossref14. Sornapudi, S., Stanley, R. J., Stoecker, W. V., et al. Deep Learning Nuclei Detection in Digitized Histology Images by Superpixels. J. Pathol. Inform. 2018, 9, 5.
Google Scholar | Crossref | Medline15. Al-Kofahi, Y., Zaltsman, A., Graves, R., et al. A Deep Learning-Based Algorithm for 2-D Cell Segmentation in Microscopy Images. BMC Bioinformatics 2018, 19, 365.
Google Scholar | Crossref | Medline16. Sirinukunwattana, K., Raza, S. E. A., Tsang, Y.-W., et al. Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images. IEEE Trans. Med. Imaging 2016, 35, 1196–1206.
Google Scholar | Crossref | Medline17. Naylor, P., Lae, M., Reyal, F., et al. Nuclei Segmentation in Histopathology Images Using Deep Neural Networks. In 2017 IEEE 14th International Symposium on Biomedical Imaging, Iowa City, IA, ; pp 933–936.
Google Scholar18. Vuola, A. O., Akram, S. U., Kannala, J. Mask-RCNN and U-Net Ensembled for Nuclei Segmentation. In 2019 IEEE 16th International Symposium on Biomedical Imaging, Venice, Italy, ; pp 208–212.
Google Scholar19. Hollandi, R., Szkalisity, A., Toth, T., et al. NucleAIzer: A Parameter-Free Deep Learning Framework for Nucleus Segmentation Using Image Style Transfer. Cell Syst. 2020, 10, 453–458.e6.
Google Scholar20. Kromp, F., Fischer, L., Bozsaky, E., et al. Deep Learning Architectures for Generalized Immunofluorescence Based Nuclear Image Segmentation. arXiv 2019. arXiv:1907.12975.
Google Scholar21. Ronneberger, O., Fischer, P., Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, ; pp 234–241.
Google Scholar22. Zhou, Z., Siddiquee, M. M. R., Tajbakhsh, N., et al. Unet++ : A Nested U-Net Architecture for Medical Image Segmentation. In 4th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Spain, ; pp 3–11.
Google Scholar23. Falk, T., Mai, D., Bensch, R., et al. U-Net: Deep Learning for Cell Counting, Detection, and Morphometry. Nat. Methods 2019, 16, 67–70.
Google Scholar | Crossref | Medline24. Sadanandan, S. K., Ranefall, P., Le Guyader, S., et al. Automated Training of Deep Convolutional Neural Networks for Cell Segmentation. Sci. Rep. 2017, 7, 7860.
Google Scholar | Crossref | Medline25. Jegou, S., Drozdzal, M., Vazquez, D., et al. The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, ; pp 11–19.
Google Scholar26. Chen, L.-C., Papandreou, G., Kokkinos, I., et al. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848.
Google Scholar | Crossref | Medline27. Chen, L.-C., Papandreou, G., Schroff, F., et al. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv 2017. https://www.arxiv-vanity.com/papers/1706.05587/ (accessed June 6, 2021).
Google Scholar28. Lateef, F., Ruichek, Y. Survey on Semantic Segmentation Using Deep Learning Techniques. Neurocomputing 2019, 338, 321–348.
Google Scholar | Crossref29. Noh, H., Hong, S., Han, B. Learning Deconvolution Network for Semantic Segmentation. In 2015 IEEE International Conference on Computer Vision, Santiago, Chile, ; 1520–1528.
Google Scholar30. Chen, L.-C., Zhu, Y., Papandreou, G., et al. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. In 15th European Conference on Computer Vision, Munich, Germany, ; pp 833–851.
Google Scholar31. Zhao, H., Shi, J., Qi, X., et al. Pyramid Scene Parsing Network. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, ; pp 2881–2890.
Google Scholar32. Drozdzal, M., Vorontsov, E., Chartrand, G., et al. The Importance of Skip Connections in Biomedical Image Segmentation. In Deep Learning and Data Labeling for Medical Applications, Athens, Greece, Oct 21, 2016; pp 179–187.
Google Scholar | Crossref33. Ioffe, S., Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In 32nd International Conference on Machine Learning, Lille, France, pp 448–456.
Google Scholar34. Nair, V., Hinton, G. E. Rectified Linear Units Improve Restricted Boltzmann Machines. In 27th International Conference on Machine Learning, Haifa, Israel, ; pp 807–814.
Google Scholar35. Qi, H., Zhang, Z., Xiao, B., et al. Deformable Convolutional Networks—Coco Detection and Segmentation Challenge 2017 Entry. In ICCV COCO Challenge Workshop, Vol. 15, 2017; pp 764–773.
Google Scholar36. Vanhoucke, V. Learning Visual Representations at Scale. ICLR Invited Talk, April 16, 2014. https://www.youtube.com/watch?v=VhLe-u0M1a8 (accessed June 5, 2021).
Google Scholar37. Huang, G., Liu, Z., Van Der Maaten, L., et al. Densely Connected Convolutional Networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, ; pp 4700–4708.
Google Scholar38. Abadi, M., Barham, P., Chen, J., et al. TensorFlow: A System for Large-Scale Machine Learning. In 12th USENIX Symposium on Operating Systems Design and Implementation, Savannah, GA, ; pp 265–283.
Google Scholar39. Kingma, D. P., Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014. arXiv:1412.6980.
Google Scholar40. Smith, L. N. A Disciplined Approach to Neural Network Hyper-Parameters: Part 1—Learning Rate, Batch Size, Momentum, and Weight Decay. arXiv 2018. arXiv:1803.09820.
Google Scholar41. Goodfellow, I., Bengio, Y.; Courville, A. Deep Learning, Vol. 1, No. 2. MIT Press: Cambridge, 2016.
Google Scholar42. Szegedy, C., Vanhoucke, V., Ioffe, S., et al. Rethinking the Inception Architecture for Computer Vision. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, ; pp 2818–2826.
Google Scholar43. van der Walt, S., Schönberger, J. L., Nunez-Iglesias, J., et al. scikit-image: Image Processing in Python. PeerJ 2014, 2, e453.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif