A Phenotypic Approach for the Identification of New Molecules for Targeted Protein Degradation Applications

1. Burslem, G. M., Crews, C. M. Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell 2020, 181, 102–114.
Google Scholar | Crossref | Medline2. Lai, A. C., Crews, C. M. Induced Protein Degradation: An Emerging Drug Discovery Paradigm. Nat. Rev. Drug Discov. 2017, 16, 101–114.
Google Scholar | Crossref | Medline3. Churcher, I. Protac-Induced Protein Degradation in Drug Discovery: Breaking the Rules or Just Making New Ones? J. Med. Chem. 2018, 61, 444–452.
Google Scholar | Crossref | Medline4. Bondeson, D. P., Mares, A., Smith, I. E., et al. Catalytic In Vivo Protein Knockdown by Small-Molecule PROTACs. Nat. Chem. Biol. 2015, 11, 611–617.
Google Scholar | Crossref | Medline5. Nowak, R. P., Jones, L. H. Target Validation Using PROTACs: Applying the Four Pillars Framework. SLAS Discov. 2021, 26, 474–483.
Google Scholar | Abstract6. Kastl, J. M., Davies, G., Godsman, E., et al. Small-Molecule Degraders beyond PROTACs—Challenges and Opportunities. SLAS Discov. 2021, 26, 524–533.
Google Scholar | Medline7. Zhang, Y., Loh, C., Chen, J., et al. Targeted Protein Degradation Mechanisms. Drug Discov. Today Technol. 2019, 31, 53–60.
Google Scholar | Crossref | Medline8. Luh, L. M., Scheib, U., Juenemann, K., et al. Prey for the Proteasome: Targeted Protein Degradation—A Medicinal Chemist’s Perspective. Angew Chem. Int. Ed. Engl. 2020, 59, 15448–15466.
Google Scholar | Crossref | Medline9. Gadd, M. S., Testa, A., Lucas, X., et al. Structural Basis of PROTAC Cooperative Recognition for Selective Protein Degradation. Nat. Chem. Biol. 2017, 13, 514–521.
Google Scholar | Crossref | Medline10. Collins, G. A., Goldberg, A. L. The Logic of the 26S Proteasome. Cell 2017, 169, 792–806.
Google Scholar | Crossref | Medline11. Verma, R., Mohl, D., Deshaies, R. J. Harnessing the Power of Proteolysis for Targeted Protein Inactivation. Mol. Cell 2020, 77, 446–460.
Google Scholar | Crossref | Medline12. Mullard, A. Arvinas’s PROTACs Pass First Safety and PK Analysis. Nat. Rev. Drug Discov. 2019, 18, 895.
Google Scholar13. Mullard, A. Targeted Protein Degraders Crowd into the Clinic. Nat. Rev. Drug Discov. 2021, 20, 247–250.
Google Scholar | Crossref | Medline14. Bulatov, E., Ciulli, A. Targeting Cullin-RING E3 Ubiquitin Ligases for Drug Discovery: Structure, Assembly and Small-Molecule Modulation. Biochem. J. 2015, 467, 365–386.
Google Scholar | Crossref | Medline15. Zengerle, M., Chan, K. H., Ciulli, A. Selective Small Molecule Induced Degradation of the BET Bromodomain Protein BRD4. ACS Chem. Biol. 2015, 10, 1770–1777.
Google Scholar | Crossref | Medline16. Lu, J., Qian, Y., Altieri, M., et al. Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4. Chem. Biol. 2015, 22, 755–763.
Google Scholar | Crossref | Medline17. Tomoshige, S., Hashimoto, Y., Ishikawa, M. Efficient Protein Knockdown of HaloTag-Fused Proteins Using Hybrid Molecules Consisting of IAP Antagonist and HaloTag Ligand. Bioorg. Med. Chem. 2016, 24, 3144–3148.
Google Scholar | Crossref | Medline18. Mares, A., Miah, A. H., Smith, I. E. D., et al. Extended Pharmacodynamic Responses Observed upon PROTAC-Mediated Degradation of RIPK2. Commun. Biol. 2020, 3, 140.
Google Scholar | Crossref | Medline19. Hines, J., Lartigue, S., Dong, H., et al. MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53. Cancer Res. 2019, 79, 251–262.
Google Scholar | Crossref | Medline20. Chamberlain, P. P., Hamann, L. G. Development of Targeted Protein Degradation Therapeutics. Nat. Chem. Biol. 2019, 15, 937–944.
Google Scholar | Crossref | Medline21. Martin-Acosta, P., Xiao, X. PROTACs to Address the Challenges Facing Small Molecule Inhibitors. Eur. J. Med. Chem. 2021, 210, 112993.
Google Scholar | Crossref | Medline22. Schapira, M., Calabrese, M. F., Bullock, A. N., et al. Targeted Protein Degradation: Expanding the Toolbox. Nat. Rev. Drug Discov. 2019, 18, 949–963.
Google Scholar | Crossref | Medline23. Madsen, D., Azevedo, C., Micco, I., et al. An Overview of DNA-Encoded Libraries: A Versatile Tool for Drug Discovery. Prog. Med. Chem. 2020, 59, 181–249.
Google Scholar | Crossref | Medline24. Goodnow, R. A., Dumelin, C. E., Keefe, A. D. DNA-Encoded Chemistry: Enabling the Deeper Sampling of Chemical Space. Nat. Rev. Drug Discov. 2017, 16, 131–147.
Google Scholar | Crossref | Medline25. Zhu, Z., Grady, L. C., Ding, Y., et al. Development of a Selection Method for Discovering Irreversible (Covalent) Binders from a DNA-Encoded Library. SLAS Discov. 2019, 24, 169–174.
Google Scholar | Abstract26. Ishida, T., Ciulli, A. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS Discov. 2021, 26, 484–502.
Google Scholar | Abstract27. Goodnow, R. DNA-Encoded Library Technology (DELT) after a Quarter Century. SLAS Discov. 2018, 23, 385–386.
Google Scholar | Abstract28. Simard, J. R., Lee, L., Vieux, E., et al. High-Throughput Quantitative Assay Technologies for Accelerating the Discovery and Optimization of Targeted Protein Degradation Therapeutics. SLAS Discov. 2021, 26, 503–517.
Google Scholar | Abstract29. Los, G. V., Encell, L. P., McDougall, M. G., et al. HaloTag: A Novel Protein Labeling Technology for Cell Imaging and Protein Analysis. ACS Chem. Biol. 2008, 3, 373–382.
Google Scholar | Crossref | Medline30. Buckley, D. L., Raina, K., Darricarrere, N., et al. HaloPROTACS: Use of Small Molecule PROTACs to Induce Degradation of HaloTag Fusion Proteins. ACS Chem. Biol. 2015, 10, 1831–1837.
Google Scholar | Crossref | Medline31. Boss, C., Hazemann, J., Kimmerlin, T., et al. The Screening Compound Collection: A Key Asset for Drug Discovery. Chimia (Aarau) 2017, 71, 667–677.
Google Scholar | Crossref | Medline32. Neklesa, T. K., Crews, C. M. Chemical Biology: Greasy Tags for Protein Removal. Nature 2012, 487, 308–309.
Google Scholar | Crossref | Medline33. Roth, S., Macartney, T. J., Konopacka, A., et al. Targeting Endogenous K-RAS for Degradation through the Affinity-Directed Protein Missile System. Cell Chem. Biol. 2020, 27, 1151–1163.e6.
Google Scholar | Crossref | Medline34. Gao, H., Sun, X., Rao, Y. PROTAC Technology: Opportunities and Challenges. ACS Med. Chem. Lett. 2020, 11, 237–240.
Google Scholar | Crossref | Medline35. Ding, Y., Fei, Y., Lu, B. Emerging New Concepts of Degrader Technologies. Trends Pharmacol. Sci. 2020, 41, 464–474.
Google Scholar | Crossref | Medline36. Landre, V., Rotblat, B., Melino, S., et al. Screening for E3-Ubiquitin Ligase Inhibitors: Challenges and Opportunities. Oncotarget 2014, 5, 7988–8013.
Google Scholar | Crossref | Medline37. Foote, P. K., Statsyuk, A. V. Monitoring PARKIN RBR Ubiquitin Ligase Activation States with UbFluor. Curr. Protoc. Chem. Biol. 2018, 10, e45.
Google Scholar | Crossref | Medline38. Rossi, M., Rotblat, B., Ansell, K., et al. High Throughput Screening for Inhibitors of the HECT Ubiquitin E3 Ligase ITCH Identifies Antidepressant Drugs as Regulators of Autophagy. Cell Death Dis. 2014, 5, e1203.
Google Scholar | Crossref39. Tian, M., Zeng, T., Liu, M., et al. A Cell-Based High-Throughput Screening Method Based on a Ubiquitin-Reference Technique for Identifying Modulators of E3 Ligases. J. Biol. Chem. 2019, 294, 2880–2891.
Google Scholar | Crossref | Medline40. Mayor-Ruiz, C., Bauer, S., Brand, M., et al. Rational Discovery of Molecular Glue Degraders via Scalable Chemical Profiling. Nat. Chem. Biol. 2020, 16, 1199–1207.
Google Scholar | Crossref | Medline41. Heidary, D. K., Fox, A., Richards, C. I., et al. A High-Throughput Screening Assay Using a Photoconvertable Protein for Identifying Inhibitors of Transcription, Translation, or Proteasomal Degradation. SLAS Discov. 2017, 22, 399–407.
Google Scholar | Medline42. Neklesa, T. K., Tae, H. S., Schneekloth, A. R., et al. Small-Molecule Hydrophobic Tagging-Induced Degradation of HaloTag Fusion Proteins. Nat. Chem. Biol. 2011, 7, 538–543.
Google Scholar | Crossref | Medline43. Hu, W. E., Zhang, X., Guo, Q. F., et al. HeLa-CCL2 Cell Heterogeneity Studied by Single-Cell DNA and RNA Sequencing. PLoS One 2019, 14, e0225466.
Google Scholar | Crossref44. Wolff, N. C., Pavía-Jiménez, A., Tcheuyap, V. T., et al. High-Throughput Simultaneous Screen and Counterscreen Identifies Homoharringtonine as Synthetic Lethal with Von Hippel-Lindau Loss in Renal Cell Carcinoma. Oncotarget 2015, 6, 16951–16962.
Google Scholar | Crossref | Medline45. Zanella, F., Lorens, J. B., Link, W. High Content Screening: Seeing Is Believing. Trends Biotechnol. 2010, 28, 237–245.
Google Scholar | Crossref | Medline46. Koren, I., Timms, R. T., Kula, T., et al. The Eukaryotic Proteome Is Shaped by E3 Ubiquitin Ligases Targeting C-Terminal Degrons. Cell 2018, 173, 1622–1635.e14.
Google Scholar | Crossref | Medline47. Paguio, A., Stecha, P., Wood, K. V., et al. Improved Dual-Luciferase Reporter Assays for Nuclear Receptors. Curr. Chem. Genomics 2010, 4, 43–49.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif