Artificial intelligence in the management of metabolic disorders: a comprehensive review

Bhai SF, Vissing J (2023) Diagnosis and management of metabolic myopathies. Muscle Nerve. https://doi.org/10.1002/mus.27840

Article  PubMed  Google Scholar 

Natesan V (2022) Therapeutics in Metabolic Diseases. In: Advances in experimental medicine and biology. pp 255–273

Song BG, Choi SC, Goh MJ et al (2023) Metabolic dysfunction-associated fatty liver disease and the risk of hepatocellular carcinoma. JHEP Rep. https://doi.org/10.1016/j.jhepr.2023.100810

Article  PubMed  PubMed Central  Google Scholar 

Park JG (2023) Unraveling metabolic dysfunction-Associated fatty liver disease: refining sub-phenotypes for resolving its heterogeneity. Gut Liver 17:489–490. https://doi.org/10.5009/gnl230222

Article  PubMed  PubMed Central  Google Scholar 

Marschner RA, Roginski AC, Ribeiro RT et al (2023) Uncovering actions of type 3 deiodinase in the metabolic dysfunction-Associated fatty liver Disease (MAFLD). https://doi.org/10.3390/cells12071022. Cells 12:

Tiivoja E, Reinson K, Muru K et al (2022) The prevalence of inherited metabolic disorders in Estonian population over 30 years: a significant increase during study period. JIMD Rep. https://doi.org/10.1002/jmd2.12325

Article  PubMed  PubMed Central  Google Scholar 

Zakir F, Mohapatra S, Farooq U, et al (2022) Introduction to metabolic disorders. In: Dureja H, Murty SN, Wich PR, Dua K (eds) Drug Delivery Systems for Metabolic Disorders. Elsevier, pp 1–20

Batool A, Zaman S, Ayub A, Prevalence of Clinical Spectrum of Inherited Metabolic Disorders in Infants and Children at a Tertiary Care Hospital in Rawalpindi, Pakistan (2020) Pakistan Armed Forces Med J. https://doi.org/10.51253/pafmj.v70i6.2417

Article  Google Scholar 

Miotto R, Li L, Kidd BA, Dudley JT (2016) Deep patient: an unsupervised representation to predict the future of patients from the Electronic Health Records. Sci Rep. https://doi.org/10.1038/srep26094

Article  PubMed  PubMed Central  Google Scholar 

Poalelungi DG, Musat CL, Fulga A et al (2023) Advancing patient care: how Artificial Intelligence is transforming Healthcare. J Pers Med 13:1214. https://doi.org/10.3390/jpm13081214

Article  PubMed  PubMed Central  Google Scholar 

TURING AM, Mind LIX (1950) I.—Computing Machinery and Intelligence. https://doi.org/10.1093/mind/LIX.236.433

Salto-Tellez M, Maxwell P, Hamilton P (2019) Artificial intelligence—the third revolution in pathology. Histopathology 74:372–376. https://doi.org/10.1111/his.13760

Article  PubMed  Google Scholar 

Kaplan A, Haenlein M (2019) Siri, Siri, in my hand: who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Bus Horiz 62:15–25. https://doi.org/10.1016/j.bushor.2018.08.004

Article  Google Scholar 

Morandín-Ahuerma F (2022) What is Artificial Intelligence? Int J Res Publication Reviews 03:1947–1951. https://doi.org/10.55248/gengpi.2022.31261

Article  Google Scholar 

Gaur N, Dharwadkar R, Thomas J (2022) Personalized Therapy Using Deep Learning Advances. In: Malviya R, Ghinea G, Dhanaraj RK, et al (eds) Deep Learning for Targeted Treatments. Wiley, pp 171–197

Sangro P, de la Torre Aláez M, Sangro B, D’Avola D (2023) Metabolic dysfunction–associated fatty liver disease (MAFLD): an update of the recent advances in pharmacological treatment. J Physiol Biochem 79:869–879. https://doi.org/10.1007/s13105-023-00954-4

Article  PubMed  PubMed Central  Google Scholar 

Kamini RS (2023) Artificial Intelligence and Machine Learning Models for Diagnosing Neurodegenerative disorders. In: Koundal D, Jain DK, Guo Y et al (eds) Data Analysis for neurodegenerative disorders. Springer Nature Singapore, Singapore, pp 15–48

Chapter  Google Scholar 

Pike A, Benkli B, Gilani SO, Hirani S (2023) Chapter 9 - Artificial intelligence and machine learning. In: Kaye AD, Urman RD, Cornett EM, Edinoff AN (eds) Substance Use and Addiction Research. Academic Press, pp 99–106

Shen D, Wu G, Suk H, Il (2017) Deep learning in Medical Image Analysis. Annu Rev Biomed Eng. https://doi.org/10.1146/annurev-bioeng-071516-044442

Castañeda WAC, Filho PB (2023) Towards an Artificial Intelligence Based Chronic Disease Management. Preprints (Basel). https://doi.org/10.20944/preprints202304.0491.v1

Article  Google Scholar 

Nigar N, Jaleel A, Islam S et al (2023) IoMT Meets Machine Learning: From Edge to Cloud Chronic Diseases Diagnosis System. J Healthc Eng 2023:. https://doi.org/10.1155/2023/9995292

Aishwarya S (2023) Artificial Intelligence Driving Diabetes Care. J Int Med Graduates. https://doi.org/10.56570/jimgs.v2i1.92. 2:

Article  Google Scholar 

Knights V, Kolak M, Markovikj G, Gajdoš Kljusurić J (2023) Modeling and optimization with Artificial Intelligence in Nutrition. Appl Sci (Switzerland). https://doi.org/10.3390/app13137835

Article  Google Scholar 

Cohen Y, Valdés-Mas R, Elinav E (2023) The Role of Artificial Intelligence in Deciphering Diet–Disease Relationships: Case Studies. Annu Rev Nutr 43:225–250. https://doi.org/10.1146/annurev-nutr-061121-090535

Hart KH, Wilson-Barnes S, Stefanidis K et al (2022) The suitability of dietary recommendations suggested by artificial intelligence technology via a novel personalised nutrition mobile application. Proc Nutr Soc. https://doi.org/10.1017/s0029665122000374

Article  Google Scholar 

Dhall Devanshi, Kaur R (2020) and JM Machine Learning: A Review of the Algorithms and Its Applications. In: Singh Pradeep Kumar and Kar AK and SY and KMH and TS (ed) Proceedings of ICRIC 2019. Springer International Publishing, Cham, pp 47–63

Nomura A, Noguchi M, Kometani M et al (2021) Artificial Intelligence in Current Diabetes Management and Prediction. Curr Diab Rep 21:61. https://doi.org/10.1007/s11892-021-01423-2

Article  PubMed  PubMed Central  Google Scholar 

Bini SA (2018) Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: what do these terms Mean and how will they Impact Health Care? J Arthroplasty. https://doi.org/10.1016/j.arth.2018.02.067

Article  PubMed  Google Scholar 

Naylor CD (2018) On the prospects for a (Deep) Learning Health Care System. JAMA 320:1099. https://doi.org/10.1001/jama.2018.11103

Article  PubMed  Google Scholar 

Ethem Alpaydın (2014) Introduction to machine learning, 3rd edn. MIT Press, Cambridge

Google Scholar 

Javaid M, Haleem A, Pratap Singh R et al (2022) Significance of machine learning in healthcare: features, pillars and applications. Int J Intell Networks. https://doi.org/10.1016/j.ijin.2022.05.002. 3:

Article  Google Scholar 

Galal A, Talal M, Moustafa A (2022) Applications of machine learning in metabolomics: Disease modeling and classification. Front Genet. https://doi.org/10.3389/fgene.2022.1017340

Article  PubMed  PubMed Central  Google Scholar 

Biswas A, Saran I, Wilson FP (2021) Introduction to supervised machine learning. Kidney360 2:878–880. https://doi.org/10.34067/KID.0000182021

van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605

Google Scholar 

McInnes L, Healy J, Melville J (2018) UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction

Libbrecht MW, Noble WS (2015) Machine learning applications in genetics and genomics. Nat Rev Genet 16:321–332. https://doi.org/10.1038/nrg3920

Article  CAS  PubMed  PubMed Central  Google Scholar 

Migdadi L, Lambert J, Telfah A et al (2021) Automated metabolic assignment: semi-supervised learning in metabolic analysis employing two dimensional nuclear magnetic resonance (NMR). Comput Struct Biotechnol J 19:5047–5058. https://doi.org/10.1016/j.csbj.2021.08.048

Article  CAS  PubMed  PubMed Central  Google Scholar 

Abram KJ, McCloskey D (2022) A comprehensive evaluation of Metabolomics Data Preprocessing methods for Deep Learning. Metabolites 12:202. https://doi.org/10.3390/metabo12030202

Article  CAS  PubMed  PubMed Central  Google Scholar 

Iqbal T, Elahi A, Wijns W, Shahzad A (2022) Exploring unsupervised machine learning classification methods for physiological stress detection. Front Med Technol. https://doi.org/10.3389/fmedt.2022.782756

Article  PubMed  PubMed Central  Google Scholar 

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.org/10.1038/nature14539

Article  CAS  PubMed  Google Scholar 

Liu X, Faes L, Kale AU et al (2019) A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health. https://doi.org/10.1016/S2589-7500(19)30123-2. 1:

Article  PubMed  Google Scholar 

Fanni SC, Febi M, Aghakhanyan G, Neri E (2023) Natural Language Processing. pp 87–99

Khurana D, Koli A, Khatter K, Singh S (2023) Natural language processing: state of the art, current trends and challenges. Multimed Tools Appl 82:3713–3744. https://doi.org/10.1007/s11042-022-13428-4

Article  PubMed  Google Scholar 

Iroju OG, Olaleke JO (2015) A systematic review of Natural Language Processing in Healthcare. Int J Inform Technol Comput Sci 7:44–50. https://doi.org/10.5815/ijitcs.2015.08.07

留言 (0)

沒有登入
gif