Fernández-de-Las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V, Cuadrado ML, Florencio LL (2021) Defining Post-COVID, symptoms (Post-acute COVID, Long COVID, Persistent Post-COVID): an integrative classification. Int J Environ Res Public Health 18(5):2621. https://doi.org/10.3390/ijerph18052621. Published 2021 Mar 5
Article CAS PubMed PubMed Central Google Scholar
Nikolich JŽ, Rosen CJ (2023) Toward Comprehensive Care for Long Covid. N Engl J Med 388(23):2113–2115. https://doi.org/10.1056/NEJMp2304550
De Lorenzo R, Di Filippo L, Scelfo S et al (2023) Longitudinal changes in physical function and their impact on Health outcomes in COVID-19 patients. Nutrients 15(20):4474. https://doi.org/10.3390/nu15204474. Published 2023 Oct 22
Article PubMed PubMed Central Google Scholar
Notarte KI, de Oliveira MHS, Peligro PJ et al (2022) Age, sex and previous comorbidities as risk factors not Associated with SARS-CoV-2 infection for long COVID-19: a systematic review and Meta-analysis. J Clin Med 11(24):7314 Published 2022 Dec 9. https://doi.org/10.3390/jcm11247314
Article PubMed PubMed Central Google Scholar
Maglietta G, Diodati F, Puntoni M et al (2022) Prognostic factors for Post-COVID-19 syndrome: a systematic review and Meta-analysis. J Clin Med 11(6):1541. https://doi.org/10.3390/jcm11061541. Published 2022 Mar 11
Article CAS PubMed PubMed Central Google Scholar
di Filippo L, Franzese V, Santoro S, Doga M, Giustina A (2024) Long COVID and pituitary dysfunctions: an unsuspected bidirectional relationship? Pituitary. https://doi.org/10.1007/s11102-024-01442-8. In press
di Filippo L, Frara S, Nannipieri F et al (2023) Low vitamin D levels are Associated with Long COVID Syndrome in COVID-19 survivors. J Clin Endocrinol Metab 108(10):e1106–e1116. https://doi.org/10.1210/clinem/dgad207
Article PubMed PubMed Central Google Scholar
Mazziotti G, Bilezikian J, Canalis E, Cocchi D, Giustina A (2012) New understanding and treatments for osteoporosis. Endocrine 41(1):58–69. https://doi.org/10.1007/s12020-011-9570-2
Article CAS PubMed Google Scholar
di Filippo L, Bilezikian JP, Canalis E, Terenzi U, Giustina A (2024) New insights into the vitamin D/PTH axis in endocrine-driven metabolic bone diseases. Endocrine 85(3):1007–1019. https://doi.org/10.1007/s12020-024-03784-6
Article CAS PubMed Google Scholar
Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ 3 (1992) Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Min Res 7(2):221–227. https://doi.org/10.1002/jbmr.5650070214
Jalava T, Sarna S, Pylkkänen L et al (2003) Association between vertebral fracture and increased mortality in osteoporotic patients. J Bone Min Res 18(7):1254–1260. https://doi.org/10.1359/jbmr.2003.18.7.1254
Watanabe R, Shiraki M, Saito M, Okazaki R, Inoue D (2018) Restrictive pulmonary dysfunction is associated with vertebral fractures and bone loss in elderly postmenopausal women. Osteoporos Int 29(3):625–633. https://doi.org/10.1007/s00198-017-4337-0
Article CAS PubMed Google Scholar
Krege JH, Kendler D, Krohn K et al (2015) Relationship between vertebral fracture burden, height loss, and pulmonary function in Postmenopausal Women with osteoporosis. J Clin Densitom 18(4):506–511. https://doi.org/10.1016/j.jocd.2015.02.004
Kim B, Kim J, Jo YH et al (2018) Risk of Pneumonia after Vertebral Compression fracture in women with low bone density: a Population-based study. Spine (Phila Pa 1976) 43(14):E830–E835. https://doi.org/10.1097/BRS.0000000000002536
di Filippo L, Formenti AM, Doga M, Pedone E, Rovere-Querini P, Giustina A (2021) Radiological thoracic vertebral fractures are highly prevalent in COVID-19 and predict Disease outcomes. J Clin Endocrinol Metab 106(2):e602–e614. https://doi.org/10.1210/clinem/dgaa738
Kottlors J, Große Hokamp N, Fervers P et al (2021) Early extrapulmonary prognostic features in chest computed tomography in COVID-19 pneumonia: bone mineral density is a relevant predictor for the clinical outcome - A multicenter feasibility study. Bone 144:115790. https://doi.org/10.1016/j.bone.2020.115790
Article CAS PubMed Google Scholar
Tahtabasi M, Kilicaslan N, Akin Y et al (2021) The Prognostic Value of vertebral bone density on chest CT in hospitalized COVID-19 patients. J Clin Densitom 24(4):506–515. https://doi.org/10.1016/j.jocd.2021.07.007
Article PubMed PubMed Central Google Scholar
Ahn SH, Seo SH, Jung CY et al (2024) Clinical outcomes of COVID-19 infection in patients with osteoporosis: a nationwide cohort study in Korea using the common data model. Sci Rep.;14(1):17738. Published 2024 Jul 31. https://doi.org/10.1038/s41598-024-68356-0
Azekawa S, Maetani T, Chubachi S et al (2024) CT-derived vertebral bone mineral density is a useful biomarker to predict COVID-19 outcome. Bone 184:117095. https://doi.org/10.1016/j.bone.2024.117095
Article CAS PubMed Google Scholar
di Filippo L, Formenti AM, Doga M et al (2021) Hypocalcemia is a distinctive biochemical feature of hospitalized COVID-19 patients. Endocrine 71(1):9–13. https://doi.org/10.1007/s12020-020-02541-9
Article CAS PubMed Google Scholar
di Filippo L, Allora A, Locatelli M et al (2021) Hypocalcemia in COVID-19 is associated with low vitamin D levels and impaired compensatory PTH response. Endocrine 74(2):219–225. https://doi.org/10.1007/s12020-021-02882-z
Article CAS PubMed PubMed Central Google Scholar
Giustina A (2021) Hypovitaminosis D and the endocrine phenotype of COVID-19. Endocrine 72(1):1–11. https://doi.org/10.1007/s12020-021-02671-8
Article CAS PubMed PubMed Central Google Scholar
di Filippo L, Frara S, Giustina A (2021) The emerging osteo-metabolic phenotype of COVID-19: clinical and pathophysiological aspects. Nat Rev Endocrinol 17(8):445–446. https://doi.org/10.1038/s41574-021-00516-y
Article CAS PubMed PubMed Central Google Scholar
di Filippo L, Frara S, Doga M, Giustina A (2022) The osteo-metabolic phenotype of COVID-19: an update. Endocrine 78(2):247–254. https://doi.org/10.1007/s12020-022-03135-3
Article CAS PubMed PubMed Central Google Scholar
di Filippo L, Compagnone N, Frara S et al (2022) Vertebral fractures at hospitalization predict impaired respiratory function during follow-up of COVID-19 survivors. Endocrine 77(2):392–400. https://doi.org/10.1007/s12020-022-03096-7
Article CAS PubMed Google Scholar
Rovere-Querini P, Tresoldi C, Conte C et al (2020) Biobanking for COVID-19 research. Panminerva Med. https://doi.org/10.23736/S0031-0808.20.04168-3 [published online ahead of print, 2020 Oct 19]
Rovere Querini P, De Lorenzo R, Conte C et al (2020) Post-COVID-19 follow-up clinic: depicting chronicity of a new disease. Acta Biomed 91(9–S):22–28 Published 2020 Jul 20. https://doi.org/10.23750/abm.v91i9-S.10146
Article CAS PubMed PubMed Central Google Scholar
Ghosh P, Niesen MJM, Pawlowski C et al (2024) Case-control study on post-COVID-19 conditions reveals severe acute infection and chronic pulmonary disease as potential risk factors. iScience 27(8):110406. https://doi.org/10.1016/j.isci.2024.110406. Published 2024 Jun 28
Article CAS PubMed PubMed Central Google Scholar
Overview| COVID-19 rapid guideline: managing the long-term effects of COVID-19| Guidance| NICE. Accessed: Jul. 09, 2024. [Online]. Available: https://www.nice.org.uk/guidance/ng188
Sivan M, Taylor S (2020) NICE guideline on long covid. BMJ 371:m4938 Published 2020 Dec 23. https://doi.org/10.1136/bmj.m4938
留言 (0)