Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F, Global Cancer Statistics 2020 (2021) GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA-Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660
Pizzato M, Li M, Vignat J, Laversanne M, Singh D, La Vecchia C, Vaccarella S (2022) The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol 10:264–272. https://doi.org/10.1016/S2213-8587(22)00035
Chen DW, Lang B, McLeod D, Newbold K, Haymart MR (2023) Thyroid cancer. Lancet 401:1531–1544. https://doi.org/10.1016/S0140-6736(23)00020-X
Fagin JA, Krishnamoorthy GP, Landa I (2023) Pathogenesis of cancers derived from thyroid follicular cells. Nat Rev Cancer 23:631–650. https://doi.org/10.1038/s41568-023-00598-y
Article PubMed PubMed Central Google Scholar
Miro C, Di Giovanni A, Murolo M, Cicatiello AG, Nappi A, Sagliocchi S, Di Cicco E, Morra F, Celetti A, Pacifico F, Imbimbo C, Crocetto F, Dentice M (2022) Thyroid hormone and androgen signals mutually interplay and enhance inflammation and tumorigenic activation of tumor microenvironment in prostate cancer. Cancer Lett 532:215581. https://doi.org/10.1016/j.canlet.2022.215581
Torabinejad S, Miro C, Barone B, Imbimbo C, Crocetto F, Dentice M (2023) The androgen-thyroid hormone crosstalk in prostate cancer and the clinical implications. Eur Thyroid J. https://doi.org/10.1530/ETJ-22-0228
Article PubMed PubMed Central Google Scholar
DeBose-Boyd RA, Ye J (2018) SREBPs in lipid metabolism, insulin signaling, and Beyond. Trends Biochem Sci 43:358–368. https://doi.org/10.1016/j.tibs.2018.01.005
Article PubMed PubMed Central Google Scholar
Li C, Peng X, Lv J, Zou H, Liu J, Zhang K, Li Z (2020) SREBP1 as a potential biomarker predicts levothyroxine efficacy of differentiated thyroid cancer. Biomed Pharmacother 123:109791. https://doi.org/10.1016/j.biopha.2019.109791
Zhu T, Wang Z, Zou T, Xu L, Zhang S, Chen Y, Chen C, Zhang W, Wang S, Ding Q, Xu G (2021) SOAT1 promotes gastric Cancer Lymph Node Metastasis through lipid synthesis, front. Pharmacol 12:769647. https://doi.org/10.3389/fphar.2021.769647
Meng H, Shen M, Li J, Zhang R, Li X, Zhao L, Huang G, Liu J (2021) Novel SREBP1 inhibitor cinobufotalin suppresses proliferation of hepatocellular carcinoma by targeting lipogenesis. Eur J Pharmacol 906:174280. https://doi.org/10.1016/j.ejphar.2021.174280
Guo S, Zhang Y, Wang S, Yang T, Ma B, Li X, Zhang Y, Jiang X (2021) LncRNA PCA3 promotes antimony-induced lipid metabolic disorder in prostate cancer by targeting MIR-132-3 P/SREBP1 signaling. Toxicol Lett 348:50–58. https://doi.org/10.1016/j.toxlet.2021.05.006
Beukhof CM, Massolt ET, Visser TJ, Korevaar T, Medici M, de Herder WW, Roeters VLJ, Mulder MT, de Rijke YB, Reiners C, Verburg FA, Peeters RP (2018) Effects of Thyrotropin on Peripheral thyroid hormone metabolism and serum lipids. Thyroid 28:168–174. https://doi.org/10.1089/thy.2017.0330
Wang F, Tan Y, Wang C, Zhang X, Zhao Y, Song X, Zhang B, Guan Q, Xu J, Zhang J, Zhang D, Lin H, Yu C, Zhao J (2012) Thyroid-stimulating hormone levels within the reference range are associated with serum lipid profiles independent of thyroid hormones. J Clin Endocrinol Metab 97:2724–2731. https://doi.org/10.1210/jc.2012
Zhou X, Huang F, Ma G, Wei W, Wu N, Liu Z (2022) Dysregulated ceramides metabolism by fatty acid 2-hydroxylase exposes a metabolic vulnerability to target cancer metastasis. Signal Transduct Target Ther 7:370. https://doi.org/10.1038/s41392-022-01199-1
Article PubMed PubMed Central Google Scholar
Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Signal Transduct Target Ther 1:15004. https://doi.org/10.1038/sigtrans.2015.4
Lu TX, Rothenberg ME, MicroRNA J (2018) Allergy Clin Immunol 141:1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034
Shirasaki T, Honda M, Shimakami T, Horii R, Yamashita T, Sakai Y, Sakai A, Okada H, Watanabe R, Murakami S, Yi M, Lemon SM, Kaneko S (2013) MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J Virol 87:5270–5286. https://doi.org/10.1128/JVI.03022-12
Article PubMed PubMed Central Google Scholar
Shi J, Yang C, An J, Hao D, Liu C, Liu J, Sun J, Jiang J (2021) KLF5-induced BBOX1-AS1 contributes to cell malignant phenotypes in non-small cell lung cancer via sponging miR-27a-5p to up-regulate MELK and activate FAK signaling pathway. J Exp Clin Cancer Res 40:148. https://doi.org/10.1186/s13046-021-01943-5
Article PubMed PubMed Central Google Scholar
Wambecke A, Ahmad M, Morice PM, Lambert B, Weiswald LB, Vernon M, Vigneron N, Abeilard E, Brotin E, Figeac M, Gauduchon P, Poulain L, Denoyelle C, Meryet-Figuiere M (2021) The lncRNA ‘UCA1’ modulates the response to chemotherapy of ovarian cancer through direct binding to miR-27a-5p and control of UBE2N levels. Mol Oncol 15:3659–3678. https://doi.org/10.1002/1878-0261.13045
Article PubMed PubMed Central Google Scholar
Chen W, Tan X, Yang Q, Fang Z, Xu Y (2022) MALAT1 enhances gemcitabine resistance in non-small cell lung cancer cells by directly affecting miR-27a-5p/PBOV1 axis. Cell Signal 94:110326. https://doi.org/10.1016/j.cellsig.2022.110326
Zhou J, Liu J, Zhang KE, Lv J, Peng X, Liu J, Li Z (2023) High-throughput sequencing analysis of differentially expressed microRNAs Associated with SREBP1 in differentiated thyroid carcinoma. Anticancer Res 43:4435–4446. https://doi.org/10.21873/anticanres.16639
Boucai L, Zafereo M, Cabanillas ME, Cancer T, Review A (2024) JAMA-J Am Med Assoc 331:425–435. https://doi.org/10.1001/jama.2023.26348
Aschebrook-Kilfoy B, Ward MH, Sabra MM, Devesa SS (2011) Thyroid cancer incidence patterns in the United States by histologic type, 1992–2006. Thyroid 21:125–134. https://doi.org/10.1089/thy.2010.0021
Article PubMed PubMed Central Google Scholar
Wang Z, Ji G, Wu Q, Feng S, Zhao Y, Cao Z, Tao C (2018) Integrated microarray meta-analysis identifies miRNA-27a as an oncogene in ovarian cancer by inhibiting FOXO1, Life Sci. 210:263–270. https://doi.org/10.1016/j.lfs.2018.08.043
Zhang LY, Chen Y, Jia J, Zhu X, He Y, Wu LM (2019) MiR-27a promotes EMT in ovarian cancer through active Wnt/휷-catenin signalling by targeting FOXO1, Cancer Biomark. 24:31–42. https://doi.org/10.3233/CBM-181229
Jin F, Yang R, Wei Y, Wang D, Zhu Y, Wang X, Lu Y, Wang Y, Zen K, Li L (2019) HIF-1alpha-induced miR-23a approximately 27a approximately 24 cluster promotes colorectal cancer progression via reprogramming metabolism. Cancer Lett. https://doi.org/10.1016/j.canlet.2018.10.025
Ljepoja B, Garcia-Roman J, Sommer AK, Wagner E, Roidl A (2019) MiRNA-27a sensitizes breast cancer cells to treatment with selective estrogen receptor modulators. Breast 43:31–38. https://doi.org/10.1016/j.breast.2018.10.007
Wu F, Li J, Guo N, Wang XH, Liao YQ (2017) MiRNA-27a promotes the proliferation and invasion of human gastric cancer MGC803 cells by targeting SFRP1 via Wnt/beta-catenin signaling pathway. Am J Cancer Res 7:405–416
PubMed PubMed Central Google Scholar
Fang F, Huang B, Sun S, Xiao M, Guo J, Yi X, Cai J, Wang Z (2018) miR-27a inhibits cervical adenocarcinoma progression by downregulating the TGF-betaRI signaling pathway. Cell Death Dis 9:395. https://doi.org/10.1038/s41419-018-0431-2
Article PubMed PubMed Central Google Scholar
Zhu L, Wang Z, Fan Q, Wang R, Sun Y (2014) microRNA-27a functions as a tumor suppressor in esophageal squamous cell carcinoma by targeting KRAS. Oncol Rep 31:280–286. https://doi.org/10.3892/or.2013.2807
Wan X, Huang W, Yang S, Zhang Y, Zhang P, Kong Z, Li T, Wu H, Jing F, Li Y (2016) Androgen-induced miR-27A acted as a tumor suppressor by targeting MAP2K4 and mediated prostate cancer progression. Int J Biochem Cell Biol 79:249–260. https://doi.org/10.1016/j.biocel.2016.08.043
Che X, Jian F, Chen C, Liu C, Liu G, Feng W (2020) PCOS serum-derived exosomal miR-27a-5p stimulates endometrial cancer cells migration and invasion. J Mol Endocrinol 64:1–12. https://doi.org/10.1530/JME-19-0159
Cao Y (2019) Adipocyte and lipid metabolism in cancer drug resistance. J Clin Invest 129:3006–3017. https://doi.org/10.1172/JCI127201
Article PubMed PubMed Central Google Scholar
Rafiei A, Ferns GA, Ahmadi R, Khaledifar A, Rahimzadeh-Fallah T, Mohmmad-Rezaei M, Emami S, Bagheri N (2021) Expression levels of miR-27a, miR-329, ABCA1, and ABCG1 genes in peripheral blood mononuclear cells and their correlation with serum levels of oxidative stress and hs-CRP in the patients with coronary artery disease. IUBMB Life 73:223–237. https://doi.org/10.1002/iub.2421
留言 (0)