Continuous glucose monitor metrics from five studies identify participants at risk for type 1 diabetes development

Insel RA, Dunne JL, Atkinson MA et al (2015) Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38(10):1964–1974. https://doi.org/10.2337/dc15-1419

Article  PubMed  PubMed Central  CAS  Google Scholar 

American Diabetes Association Professional Practice Committee (2024) 2. Diagnosis and classification of diabetes: standards of care in diabetes-2024. Diabetes Care 47(Suppl 1):S20–S42. https://doi.org/10.2337/dc24-S002

Article  Google Scholar 

Gorus FK, Balti EV, Messaaoui A et al (2017) Twenty-year progression rate to clinical onset according to autoantibody profile, age, and HLA-DQ genotype in a registry-based group of children and adults with a first-degree relative with type 1 diabetes. Diabetes Care 40(8):1065–1072. https://doi.org/10.2337/dc16-2228

Article  PubMed  CAS  Google Scholar 

Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309(23):2473–2479. https://doi.org/10.1001/jama.2013.6285

Article  PubMed  PubMed Central  CAS  Google Scholar 

Jensen ET, Stafford JM, Saydah S et al (2021) Increase in prevalence of diabetic ketoacidosis at diagnosis among youth with type 1 diabetes: the SEARCH for diabetes in youth study. Diabetes Care 44(7):1573–1578. https://doi.org/10.2337/dc20-0389

Article  PubMed  PubMed Central  Google Scholar 

Swedish National Diabetes Register (2020) Swediabkids Annual Report. Available from https://www.ndr.nu/pdfs/Annual_Report_Swediabkids_2020.pdf. Accessed 18 Sept 2024

Alonso GT, Coakley A, Pyle L, Manseau K, Thomas S, Rewers A (2020) Diabetic ketoacidosis at diagnosis of type 1 diabetes in Colorado children, 2010–2017. Diabetes Care 43(1):117–121. https://doi.org/10.2337/dc19-0428

Article  PubMed  Google Scholar 

Joshi K, Harris M, Cotterill A et al (2024) Continuous glucose monitoring has an increasing role in pre-symptomatic type 1 diabetes: advantages, limitations, and comparisons with laboratory-based testing. Clin Chem Lab Med 62(1):41–49. https://doi.org/10.1515/cclm-2023-0234

Article  PubMed  CAS  Google Scholar 

Montaser E, Breton MD, Brown SA, DeBoer MD, Kovatchev B, Farhy LS (2023) Predicting immunological risk for stage 1 and stage 2 diabetes using a 1-week CGM home test, nocturnal glucose increments, and standardized liquid mixed meal breakfasts, with classification enhanced by machine learning. Diabetes Technol Ther 25(9):631–642. https://doi.org/10.1089/dia.2023.0064

Article  PubMed  PubMed Central  CAS  Google Scholar 

Steck AK, Dong F, Geno Rasmussen C et al (2022) CGM metrics predict imminent progression to type 1 diabetes: Autoimmunity Screening for Kids (ASK) Study. Diabetes Care 45(2):365–371. https://doi.org/10.2337/dc21-0602

Article  PubMed  CAS  Google Scholar 

Van Dalem A, Demeester S, Balti EV et al (2015) Relationship between glycaemic variability and hyperglycaemic clamp-derived functional variables in (impending) type 1 diabetes. Diabetologia 58(12):2753–2764. https://doi.org/10.1007/s00125-015-3761-y

Article  PubMed  CAS  Google Scholar 

Steck AK, Dong F, Taki I, Hoffman M, Klingensmith GJ, Rewers MJ (2014) Early hyperglycemia detected by continuous glucose monitoring in children at risk for type 1 diabetes. Diabetes Care 37(7):2031–2033. https://doi.org/10.2337/dc13-2965

Article  PubMed  PubMed Central  CAS  Google Scholar 

Helminen O, Pokka T, Tossavainen P, Ilonen J, Knip M, Veijola R (2016) Continuous glucose monitoring and HbA1c in the evaluation of glucose metabolism in children at high risk for type 1 diabetes mellitus. Diabetes Res Clin Pract 120:89–96. https://doi.org/10.1016/j.diabres.2016.07.027

Article  PubMed  CAS  Google Scholar 

Wilson DM, Pietropaolo SL, Acevedo-Calado M et al (2023) CGM metrics identify dysglycemic states in participants from the TrialNet pathway to prevention study. Diabetes care 46(3):526–534. https://doi.org/10.2337/dc22-1297

Article  PubMed  PubMed Central  CAS  Google Scholar 

Cox DR (1984) Analysis of survival data. Chapman & Hall, New York

Google Scholar 

Benjamini Y, Hochberg Y (2000) On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat 25(1):60–83. https://doi.org/10.3102/10769986025001060

Article  Google Scholar 

McQueen RB, Geno Rasmussen C, Waugh K et al (2020) Cost and cost-effectiveness of large-scale screening for type 1 diabetes in Colorado. Diabetes Care 43(7):1496–1503. https://doi.org/10.2337/dc19-2003

Article  PubMed  PubMed Central  Google Scholar 

Barker JM, Goehrig SH, Barriga K et al (2004) Clinical characteristics of children diagnosed with type 1 diabetes through intensive screening and follow-up. Diabetes Care 27(6):1399–1404. https://doi.org/10.2337/diacare.27.6.1399

Article  PubMed  Google Scholar 

Triolo TM, Chase HP, Barker JM (2009) Diabetic subjects diagnosed through the Diabetes Prevention Trial-Type 1 (DPT-1) are often asymptomatic with normal A1C at diabetes onset. Diabetes Care 32(5):769–773. https://doi.org/10.2337/dc08-1872

Article  PubMed  PubMed Central  Google Scholar 

Elding Larsson H, Vehik K, Bell R et al (2011) Reduced prevalence of diabetic ketoacidosis at diagnosis of type 1 diabetes in young children participating in longitudinal follow-up. Diabetes Care 34(11):2347–2352. https://doi.org/10.2337/dc11-1026

Article  PubMed  PubMed Central  Google Scholar 

Elding Larsson H, Vehik K, Gesualdo P et al (2014) Children followed in the TEDDY study are diagnosed with type 1 diabetes at an early stage of disease. Pediatr Diabetes 15(2):118–126. https://doi.org/10.1111/pedi.12066

Article  PubMed  Google Scholar 

Ylescupidez A, Speake C, Pietropaolo SL et al (2023) OGTT metrics surpass continuous glucose monitoring data for T1D prediction in multiple-autoantibody-positive individuals. J Clin Endocrinol Metab 109(1):57–67. https://doi.org/10.1210/clinem/dgad472

Article  PubMed  PubMed Central  Google Scholar 

Decochez K, De Leeuw IH, Keymeulen B et al (2002) IA-2 autoantibodies predict impending type I diabetes in siblings of patients. Diabetologia 45(12):1658–1666. https://doi.org/10.1007/s00125-002-0949-8

Article  PubMed  CAS  Google Scholar 

De Grijse J, Asanghanwa M, Nouthe B et al (2010) Predictive power of screening for antibodies against insulinoma-associated protein 2 beta (IA-2β) and zinc transporter-8 to select first-degree relatives of type 1 diabetic patients with risk of rapid progression to clinical onset of the disease: implications for prevention trials. Diabetologia 53(3):517–524. https://doi.org/10.1007/s00125-009-1618-y

Article  PubMed  CAS  Google Scholar 

Gorus FK, Goubert P, Semakula C et al (1997) IA-2-autoantibodies complement GAD65-autoantibodies in new-onset IDDM patients and help predict impending diabetes in their siblings. The Belgian Diabetes Registry. Diabetologia 40(1):95–99. https://doi.org/10.1007/s001250050648

Article  PubMed  CAS  Google Scholar 

Steck AK, Vehik K, Bonifacio E et al (2015) Predictors of progression from the appearance of islet autoantibodies to early childhood diabetes: The Environmental Determinants of Diabetes in the Young (TEDDY). Diabetes Care 38(5):808–813. https://doi.org/10.2337/dc14-2426

Article  PubMed  PubMed Central  Google Scholar 

Dabelea D, Ma Y, Knowler WC et al (2014) Diabetes autoantibodies do not predict progression to diabetes in adults: the Diabetes Prevention Program. Diabetic Med 31(9):1064–1068. https://doi.org/10.1111/dme.12437

Article  PubMed  CAS  Google Scholar 

Smith G (2018) Step away from stepwise. J Big Data 5(1):32. https://doi.org/10.1186/s40537-018-0143-6

Article  Google Scholar 

Elendu C, David JA, Udoyen AO et al (2023) Comprehensive review of diabetic ketoacidosis: an update. Ann Med Surg (Lond) 85(6):2802–2807. https://doi.org/10.1097/ms9.0000000000000894

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif