Insel RA, Dunne JL, Atkinson MA et al (2015) Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 38(10):1964–1974. https://doi.org/10.2337/dc15-1419
Article PubMed PubMed Central CAS Google Scholar
American Diabetes Association Professional Practice Committee (2024) 2. Diagnosis and classification of diabetes: standards of care in diabetes-2024. Diabetes Care 47(Suppl 1):S20–S42. https://doi.org/10.2337/dc24-S002
Gorus FK, Balti EV, Messaaoui A et al (2017) Twenty-year progression rate to clinical onset according to autoantibody profile, age, and HLA-DQ genotype in a registry-based group of children and adults with a first-degree relative with type 1 diabetes. Diabetes Care 40(8):1065–1072. https://doi.org/10.2337/dc16-2228
Article PubMed CAS Google Scholar
Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309(23):2473–2479. https://doi.org/10.1001/jama.2013.6285
Article PubMed PubMed Central CAS Google Scholar
Jensen ET, Stafford JM, Saydah S et al (2021) Increase in prevalence of diabetic ketoacidosis at diagnosis among youth with type 1 diabetes: the SEARCH for diabetes in youth study. Diabetes Care 44(7):1573–1578. https://doi.org/10.2337/dc20-0389
Article PubMed PubMed Central Google Scholar
Swedish National Diabetes Register (2020) Swediabkids Annual Report. Available from https://www.ndr.nu/pdfs/Annual_Report_Swediabkids_2020.pdf. Accessed 18 Sept 2024
Alonso GT, Coakley A, Pyle L, Manseau K, Thomas S, Rewers A (2020) Diabetic ketoacidosis at diagnosis of type 1 diabetes in Colorado children, 2010–2017. Diabetes Care 43(1):117–121. https://doi.org/10.2337/dc19-0428
Joshi K, Harris M, Cotterill A et al (2024) Continuous glucose monitoring has an increasing role in pre-symptomatic type 1 diabetes: advantages, limitations, and comparisons with laboratory-based testing. Clin Chem Lab Med 62(1):41–49. https://doi.org/10.1515/cclm-2023-0234
Article PubMed CAS Google Scholar
Montaser E, Breton MD, Brown SA, DeBoer MD, Kovatchev B, Farhy LS (2023) Predicting immunological risk for stage 1 and stage 2 diabetes using a 1-week CGM home test, nocturnal glucose increments, and standardized liquid mixed meal breakfasts, with classification enhanced by machine learning. Diabetes Technol Ther 25(9):631–642. https://doi.org/10.1089/dia.2023.0064
Article PubMed PubMed Central CAS Google Scholar
Steck AK, Dong F, Geno Rasmussen C et al (2022) CGM metrics predict imminent progression to type 1 diabetes: Autoimmunity Screening for Kids (ASK) Study. Diabetes Care 45(2):365–371. https://doi.org/10.2337/dc21-0602
Article PubMed CAS Google Scholar
Van Dalem A, Demeester S, Balti EV et al (2015) Relationship between glycaemic variability and hyperglycaemic clamp-derived functional variables in (impending) type 1 diabetes. Diabetologia 58(12):2753–2764. https://doi.org/10.1007/s00125-015-3761-y
Article PubMed CAS Google Scholar
Steck AK, Dong F, Taki I, Hoffman M, Klingensmith GJ, Rewers MJ (2014) Early hyperglycemia detected by continuous glucose monitoring in children at risk for type 1 diabetes. Diabetes Care 37(7):2031–2033. https://doi.org/10.2337/dc13-2965
Article PubMed PubMed Central CAS Google Scholar
Helminen O, Pokka T, Tossavainen P, Ilonen J, Knip M, Veijola R (2016) Continuous glucose monitoring and HbA1c in the evaluation of glucose metabolism in children at high risk for type 1 diabetes mellitus. Diabetes Res Clin Pract 120:89–96. https://doi.org/10.1016/j.diabres.2016.07.027
Article PubMed CAS Google Scholar
Wilson DM, Pietropaolo SL, Acevedo-Calado M et al (2023) CGM metrics identify dysglycemic states in participants from the TrialNet pathway to prevention study. Diabetes care 46(3):526–534. https://doi.org/10.2337/dc22-1297
Article PubMed PubMed Central CAS Google Scholar
Cox DR (1984) Analysis of survival data. Chapman & Hall, New York
Benjamini Y, Hochberg Y (2000) On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat 25(1):60–83. https://doi.org/10.3102/10769986025001060
McQueen RB, Geno Rasmussen C, Waugh K et al (2020) Cost and cost-effectiveness of large-scale screening for type 1 diabetes in Colorado. Diabetes Care 43(7):1496–1503. https://doi.org/10.2337/dc19-2003
Article PubMed PubMed Central Google Scholar
Barker JM, Goehrig SH, Barriga K et al (2004) Clinical characteristics of children diagnosed with type 1 diabetes through intensive screening and follow-up. Diabetes Care 27(6):1399–1404. https://doi.org/10.2337/diacare.27.6.1399
Triolo TM, Chase HP, Barker JM (2009) Diabetic subjects diagnosed through the Diabetes Prevention Trial-Type 1 (DPT-1) are often asymptomatic with normal A1C at diabetes onset. Diabetes Care 32(5):769–773. https://doi.org/10.2337/dc08-1872
Article PubMed PubMed Central Google Scholar
Elding Larsson H, Vehik K, Bell R et al (2011) Reduced prevalence of diabetic ketoacidosis at diagnosis of type 1 diabetes in young children participating in longitudinal follow-up. Diabetes Care 34(11):2347–2352. https://doi.org/10.2337/dc11-1026
Article PubMed PubMed Central Google Scholar
Elding Larsson H, Vehik K, Gesualdo P et al (2014) Children followed in the TEDDY study are diagnosed with type 1 diabetes at an early stage of disease. Pediatr Diabetes 15(2):118–126. https://doi.org/10.1111/pedi.12066
Ylescupidez A, Speake C, Pietropaolo SL et al (2023) OGTT metrics surpass continuous glucose monitoring data for T1D prediction in multiple-autoantibody-positive individuals. J Clin Endocrinol Metab 109(1):57–67. https://doi.org/10.1210/clinem/dgad472
Article PubMed PubMed Central Google Scholar
Decochez K, De Leeuw IH, Keymeulen B et al (2002) IA-2 autoantibodies predict impending type I diabetes in siblings of patients. Diabetologia 45(12):1658–1666. https://doi.org/10.1007/s00125-002-0949-8
Article PubMed CAS Google Scholar
De Grijse J, Asanghanwa M, Nouthe B et al (2010) Predictive power of screening for antibodies against insulinoma-associated protein 2 beta (IA-2β) and zinc transporter-8 to select first-degree relatives of type 1 diabetic patients with risk of rapid progression to clinical onset of the disease: implications for prevention trials. Diabetologia 53(3):517–524. https://doi.org/10.1007/s00125-009-1618-y
Article PubMed CAS Google Scholar
Gorus FK, Goubert P, Semakula C et al (1997) IA-2-autoantibodies complement GAD65-autoantibodies in new-onset IDDM patients and help predict impending diabetes in their siblings. The Belgian Diabetes Registry. Diabetologia 40(1):95–99. https://doi.org/10.1007/s001250050648
Article PubMed CAS Google Scholar
Steck AK, Vehik K, Bonifacio E et al (2015) Predictors of progression from the appearance of islet autoantibodies to early childhood diabetes: The Environmental Determinants of Diabetes in the Young (TEDDY). Diabetes Care 38(5):808–813. https://doi.org/10.2337/dc14-2426
Article PubMed PubMed Central Google Scholar
Dabelea D, Ma Y, Knowler WC et al (2014) Diabetes autoantibodies do not predict progression to diabetes in adults: the Diabetes Prevention Program. Diabetic Med 31(9):1064–1068. https://doi.org/10.1111/dme.12437
Article PubMed CAS Google Scholar
Smith G (2018) Step away from stepwise. J Big Data 5(1):32. https://doi.org/10.1186/s40537-018-0143-6
Elendu C, David JA, Udoyen AO et al (2023) Comprehensive review of diabetic ketoacidosis: an update. Ann Med Surg (Lond) 85(6):2802–2807. https://doi.org/10.1097/ms9.0000000000000894
留言 (0)