Quantifying the tumour vasculature environment from CD-31 immunohistochemistry images of breast cancer using deep learning based semantic segmentation

Forster Jake C, Harriss-Phillips Wendy M, Douglass Michael Jj, Bezak Eva. A review of the development of tumor vasculature and its effects on the tumor microenvironment. Hypoxia (Auckland, NZ). 2017;5(28443291):21–32.

PubMed  Google Scholar 

Hagendoorn Jeroen, Tong Ricky, Fukumura Dai, Lin Qingcong, Lobo Jennifer, Padera Timothy P, Lei Xu, Kucherlapati Raju, Jain Rakesh K. Onset of abnormal blood and lymphatic vessel function and interstitial hypertension in early stages of carcinogenesis. Can Res. 2006;66(7):3360–4.

Article  CAS  Google Scholar 

Fang Luo, He Ying, Tong Yinghui, Luying Hu, Xin Wenxiu, Liu Yujia, Zhong Like, Zhang Yiwen, Huang Ping. Flattened microvessel independently predicts poor prognosis of patients with non-small cell lung cancer. Oncotarget. 2017;8(18):30092–9.

Article  PubMed  PubMed Central  Google Scholar 

Petrova V, Annicchiarico-Petruzzelli M, Melino G, Amelio I. The hypoxic tumour microenvironment. Oncogenesis. 2018;7(1):10.

Article  PubMed  PubMed Central  Google Scholar 

Uzzan Bernard, Nicolas Patrick, Cucherat Michel, Perret Gérard-Yves. Microvessel density as a prognostic factor in women with breast cancer. Can Res. 2004;64(9):2941–55.

Article  CAS  Google Scholar 

Heijblom M, Klaase JM, van den Engh FM, van Leeuwen TG, Steenbergen W, Manohar S. Imaging tumor vascularization for detection and diagnosis of breast cancer. Technol Cancer Res Treat. 2011;10(6):607–23.

Article  CAS  PubMed  Google Scholar 

Hasan J, Byers R, Jayson GC. Intra-tumoural microvessel density in human solid tumours. Br J Cancer. 2002;86:1566–77.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hansen S, Grabau DA, Sørensen FB, Bak M, Vach W, Rose C. Vascular grading of angiogenesis: prognostic significance in breast cancer. Br J Cancer. 2000;82(2):339–47.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ingeholm P, Pedersen L, Holck S. Quantification of microvessel density of breast carcinoma: an assessment of the inter- and intraobserver variation. The Breast. 1999;8(5):251–6.

Article  CAS  PubMed  Google Scholar 

Mikalsen Lars Tore Gyland, Dhakal Hari Prasad, Bruland Øyvind S, Nesland Jahn M, Rune Olsen DAG. Quantification of angiogenesis in breast cancer by automated vessel identification in CD34 immunohistochemical sections. Anticancer Res. 2011;31(12):4053–60.

PubMed  Google Scholar 

Ing Nathan, Huang Fangjin, Conley Andrew, You Sungyong, Ma Zhaoxuan, Klimov Sergey, Ohe Chisato, Yuan Xiaopu, Amin Mahul B, Figlin Robert, Gertych Arkadiusz, Knudsen Beatrice S. A novel machine learning approach reveals latent vascular phenotypes predictive of renal cancer outcome. Sci Rep. 2017;7(1):13190.

Article  PubMed  PubMed Central  Google Scholar 

Reyes-Aldasoro CC, Williams LJ, Akerman S, Kanthou C, Tozer GM. An automatic algorithm for the segmentation and morphological analysis of microvessels in immunostained histological tumour sections. J Microsc. 2011;242(3):262–78.

Article  CAS  PubMed  Google Scholar 

Kather Jakob Nikolas, Marx Alexander, Reyes-Aldasoro Constantino Carlos, Schad Lothar R, Zöllner Frank Gerrit, Weis Cleo-Aron. Continuous representation of tumor microvessel density and detection of angiogenic hotspots in histological whole-slide images. Oncotarget. 2015;6(22):19163–76.

Article  PubMed  PubMed Central  Google Scholar 

Milagro Fernández-Carrobles M, Tadeo Irene, Bueno Gloria, Noguera Rosa, Déniz Oscar, Salido Jesús, García-Rojo Marcial. TMA vessel segmentation based on color and morphological features: application to angiogenesis research. TheScientificWorldJOURNAL. 2013;2013(24489494):263190–263190.

Article  PubMed  PubMed Central  Google Scholar 

McKenney Jesse K, Weiss Sharon W, Folpe Andrew L. Cd31 expression in intratumoral macrophages: a potential diagnostic pitfall. Am J Surg Pathol. 2001;25(9):1167.

Article  Google Scholar 

Plocharczyk Elizabeth, Wakely Paul E Jr. Cd31 expression in plasmacytic/plasmablastic lesions. Ann Diagn Pathol. 2013;17:498–501.

Article  PubMed  Google Scholar 

Bankhead Peter, Loughrey Maurice B, Fernández José A, Dombrowski Yvonne, McArt Darragh G, Dunne Philip D, McQuaid Stephen, Gray Ronan T, Murray Liam J, Coleman Helen G, James Jacqueline A, Salto-Tellez Manuel, Hamilton Peter W. Qupath: open source software for digital pathology image analysis. Sci Rep. 2017;7(1):16878.

Article  PubMed  PubMed Central  Google Scholar 

Ronneberger Olaf, Fischer Philipp, Brox Thomas. U-net: Convolutional networks for biomedical image segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi, editors, Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, 2015;234–241.

Hildebrand T, Rüegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc. 1997;185(1):67–75.

Article  Google Scholar 

Kramer CJH, Vangangelt KMH, van Pelt GW, Dekker TJA, Tollenaar RAEM, Mesker WE. The prognostic value of tumour-stroma ratio in primary breast cancer with special attention to triple-negative tumours: a review. Breast Cancer Res Treat. 2019;173(1):55–64.

Article  CAS  PubMed  Google Scholar 

Yi Faliu, Yang Lin, Wang Shidan, Guo Lei, Huang Chenglong, Xie Yang, Xiao Guanghua. Microvessel prediction in H &E stained pathology images using fully convolutional neural networks. BMC Bioinf. 2018;19(1):64.

Article  Google Scholar 

Fraz MM, Shaban M, Graham S, Khurram SA, Rajpoot NM. Uncertainty Driven Pooling Network for Microvessel Segmentation in Routine Histology Images. In Computational Pathology and Ophthalmic Medical Image Analysis. 2018;156–64.

Fraz MM, Khurram SA, Graham S, Shaban M, Hassan M, Loya A, Rajpoot NM. Fabnet: feature attention-based network for simultaneous segmentation of microvessels and nerves in routine histology images of oral cancer. Neural Comput Appl. 2019;32:9915.

Article  Google Scholar 

Van den Eynden GG, Van der Auwera I, Van Laere SJ, Colpaert CG, van Dam P, Dirix LY, Vermeulen PB, Van Marck EA. Distinguishing blood and lymph vessel invasion in breast cancer: a prospective immunohistochemical study. Br J Cancer. 2006;94(11):1643–9.

Article  PubMed  PubMed Central  Google Scholar 

Fuller Ashley M, Olsson Linnea T, Midkiff Bentley R, Kirk Erin L, McNaughton Kirk K, Calhoun Benjamin C, Troester Melissa A. Vascular density of histologically benign breast tissue from women with breast cancer: associations with tissue composition and tumor characteristics. Hum Pathol. 2019;91:43–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cruz-Roa Angel, Gilmore Hannah, Basavanhally Ajay, Feldman Michael, Ganesan Shridar, Shih Natalie N. C, Tomaszewski John, González Fabio A, Madabhushi Anant. Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci Rep. 2017;7(28418027):46450–46450.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McGregor Richard J, Chau You-Ying, Kendall Timothy J, Artibani Mara, Hastie Nicholas, Hadoke Patrick W. F. Wt1 expression in vessels varies with histopathological grade in tumour-bearing and control tissue from patients with breast cancer. Br J Cancer. 2018;119(12):1508–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang S, Zhang D, Yi S, Gong M, Lu C, Cai Y, Tang X, Zou L. The relationship of lymphatic vessel density, lymphovascular invasion, and lymph node metastasis in breast cancer: a systematic review and meta-analysis. Oncotarget. 2017;8:2863–73.

Article  PubMed  Google Scholar 

O’Donnell Rebekah K, Feldman Michael, Mick Rosemarie, Muschel Ruth J. Immunohistochemical method identifies lymphovascular invasion in a majority of oral squamous cell carcinomas and discriminates between blood and lymphatic vessel invasion. J Histochem Cytochem: Off J Histochem Soc. 2008;56(9):803–10.

Article  Google Scholar 

Jiayuan Wu, Liang Caixia, Chen Manyu, Wenmei Su. Association between tumor-stroma ratio and prognosis in solid tumor patients: a systematic review and meta-analysis. Oncotarget. 2016;7:68954–65.

Article  Google Scholar 

Ka Millar Ewan, Browne Lois H, Julia Beretov, Kirsty Lee, Jodi Lynch, Alexander Swarbrick, Graham Peter H. Tumour stroma ratio assessment using digital image analysis predicts survival in triple negative and luminal breast cancer. Cancers. 2020;12:3749.

Article  Google Scholar 

Raza Ali H, Dariush Aliakbar, Provenzano Elena, Bardwell Helen, Abraham Jean E, Iddawela Mahesh, Vallier Anne-Laure, Hiller Louise, Dunn Janet A, Bowden Sarah J, Hickish Tamas, McAdam Karen, Houston Stephen, Irwin Mike J, Pharoah Paul D. P, Brenton James D, Walton Nicholas A, Earl Helena M, Caldas Carlos. Computational pathology of pre-treatment biopsies identifies lymphocyte density as a predictor of response to neoadjuvant chemotherapy in breast cancer. Breast cancer research: BCR. 2016;18(1):21–21.

Article  PubMed  Google Scholar 

Mohammed ZMA, Going JJ, Edwards J, Elsberger B, Doughty JC, McMillan DC. The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer. 2012;107:864–73.

Article 

留言 (0)

沒有登入
gif