Predicting the risk of invasive fungal infections in ICU sepsis population: the AMI risk assessment tool

Nikolaos VS, Dimitrios PK. Invasive fungal infections in patients with cancer in the intensive care unit. Int J Antimicrob Agents. 2012;39:464–71.

Article  Google Scholar 

Li P, Li Y, Zhang YJ, et al. A dynamic nomogram to predict invasive fungal super-infection during healthcare-associated bacterial infection in intensive care unit patients: an ambispective cohort study in China. Front Cell Infect Microbiol. 2024;14:1281759.

Article  PubMed  PubMed Central  Google Scholar 

Hoenigl M, Enoch DA, Wichmann D, et al. Exploring European consensus about the remaining treatment challenges and subsequent opportunities to improve the management of invasive fungal infection (IFI) in the intensive care unit. Mycopathologia. 2024;189:41.

Article  PubMed  PubMed Central  Google Scholar 

MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol. 2023;32:2565–81.

Article  PubMed  Google Scholar 

Delaloye J, Calandra T. Invasive candidiasis as a cause of sepsis in the critically ill patient. Virulence. 2014;5:161–9.

Article  PubMed  Google Scholar 

Guery BP, Arendrup MC, Auzinger G, et al. Management of invasive candidiasis and candidemia in adult non-neutropenic intensive care unit patients: part II. Treat Intensive Care Med. 2009;35:206–14.

Article  CAS  PubMed  Google Scholar 

Rehn M, Chew MS, Olkkola KT, et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock in adults 2021 - endorsement by the scandinavian society of anaesthesiology and intensive care medicine. Acta Anaesthesiol Scand. 2022;66:634–5.

Article  PubMed  PubMed Central  Google Scholar 

Kollef M, Micek S, Hampton N, et al. Septic shock attributed to Candida infection: importance of empiric therapy and source control. Clin Infect Dis. 2012;54:1739–46.

Article  CAS  PubMed  Google Scholar 

Kett DH, Azoulay E, Echeverria PM, Vincent JL. Extended prevalence of infection in ICU study (EPIC II) group of investigators. Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med. 2011;39:665–70.

Article  PubMed  Google Scholar 

Chapman B, Slavin M, Marriott D, et al. Changing epidemiology of candidemia in Australia. J Antimicrob Chemother. 2017;72:1103–8.

Article  CAS  PubMed  Google Scholar 

Kofteridis DP, Valachis A, Dimopoulou D, et al. Factors influencing non-albicans Candidemia: a case-case-control study. Mycopathologia. 2017;182:665–72.

Article  PubMed  Google Scholar 

Bartoletti M, Giannella M, Lewis R, et al. A prospective multicentre study of the epidemiology and outcomes of bloodstream infection in cirrhotic patients. Clin Microbiol Infect. 2018;24:e5461–8.

Article  Google Scholar 

Yapar N. Epidemiology and risk factors for invasive candidiasis. Ther Clin Risk Manag. 2014;10:95–105.

Article  PubMed  PubMed Central  Google Scholar 

Laura E, Andrew R, Waleed A, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021;49:e1063–143.

Google Scholar 

Pauw BD, Walsh TJ, Donnelly JP, et al. Revised definitions of invasive fungal disease from the European organization for research and treatment of cancer/invasive fungal infections cooperative group and the national institute of allergy and infectious diseases mycoses study group (EORTC/MSG) consensus group. Clin Infect Dis. 2008;46:1813–21.

Article  PubMed  Google Scholar 

Donnelly JP, Chen SC, Kauffman CA, et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis. 2020;71:1367–76.

Article  PubMed  Google Scholar 

Guo F, Yang Y, Kang Y, et al. Invasive candidiasis in intensive care units in China: a multicentre prospective observational study. J Antimicrob Chemother. 2013;68:1660–8.

Article  CAS  PubMed  Google Scholar 

Steyerberg EW, Eijkemans MJ, Harrell FE, et al. Prognostic modelling with logistic regression analysis: a comparison of selection and estimation methods in small data sets. Stat Med. 2000;19:1059–79.

Article  CAS  PubMed  Google Scholar 

Pavlou M, Ambler G, Seaman SR, et al. How to develop a more accurate risk prediction model when there are few events. BMJ. 2015;351:h3868.

Article  PubMed  PubMed Central  Google Scholar 

Vittinghoff E, McCulloch CE. Relaxing the rule of ten events per variable in logistic and Cox regression. Am J Epidemiol. 2007;165:710–8.

Article  PubMed  Google Scholar 

Geurts P, Irrthum A, Wehenkel L. Supervised learning with decision tree-based methods in computational and systems biology. Mol Biosyst. 2009;5:1593–605.

Article  CAS  PubMed  Google Scholar 

Song YY, Lu Y. Decision tree methods: applications for classification and prediction. Shanghai Arch Psychiatry. 2015;27:130–5.

PubMed  PubMed Central  Google Scholar 

Hosmer DW, Hosmer T, Le Cessie S, et al. A comparison of goodness-of fit tests for the logistic regression model. Stat Med. 1997;16:965–80.

Article  CAS  PubMed  Google Scholar 

Li FY, Zhou MG, Zou ZJ, et al. A risk prediction model for invasive fungal disease in critically ill patients in the intensive care unit. Asian Nurs Res. 2018;12:299–303.

Article  Google Scholar 

Guillamet CV, Vazquez R, Micek ST, et al. Development and validation of a clinical prediction rule for candidemia in hospitalized patients with severe sepsis and septic shock. J Crit Care. 2015;30:715–20.

Article  PubMed  Google Scholar 

Paphitou NI, Ostrosky-Zeichner L, Rex JH. Rules for identifying patients at increased risk for candidal infections in the surgical intensive care unit: Approach to developing practical criteria for systematic use in antifungal prophylaxis trials. Med Mycol. 2005;43:235–43.

Article  PubMed  Google Scholar 

Ostrosky-Zeichner L, Sable C, Sobel J, et al. Multicenter retrospective development and validation of a clinical prediction rule for nosocomial invasive candidiasis in the intensive care setting. Eur J Clin Microbiol Infect Dis. 2007;26:271–6.

Article  CAS  PubMed  Google Scholar 

Trick WE, Fridkin SK, Edwards JR, et al. National nosocomial infections surveillance system hospitals: secular trend of hospital-acquired candidemia among intensive care unit patients in the United States during 1989–1999. Clin Infect Dis. 2002;35:627–30.

Article  CAS  PubMed  Google Scholar 

León C, Ruiz-Santana S, Saavedra P, et al. A bedside scoring system (Candida score) for early antifungal treatment innonneutropenic critically ill patients with Candida colonization. Crit Care Med. 2006;34:730–7.

Article  PubMed  Google Scholar 

León C, Ruiz-Santana S, Saavedra P, et al. Usefulness of the Candida score for discriminating between Candida colonizationand invasive candidiasis in non-neutropenic critically ill patients: a prospectivemulticenter study. Crit Care Med. 2009;37:1624–33.

Article  PubMed  Google Scholar 

Møller MH, Alhazzani W, Shankar-Hari M. Focus on sepsis. Intensive Care Med. 2019;45:1459–61.

Article  PubMed  Google Scholar 

Alvarez-Lerma F, Palomar M, León C, et al. Fungal colonization and/or infection in intensive care units.: Multicenter study of 1,562 patients. Med. Clin. 2003;121:161–6.

Google Scholar 

Yang SP, Chen YY, Hsu HS, et al. A risk factor analysis of healthcare-associated fungal infections in an intensive care unit: a retrospective cohort study. BMC Infect Dis. 2013;13:10.

Article  PubMed  PubMed Central  Google Scholar 

Hung CY, Kao KC, Wang PN, et al. Invasive fungal infection among hematopoietic stem cell transplantation patients with mechanical ventilation in the intensive care unit. BMC Infect Dis. 2012;12:44.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif