Homeostasis and metabolism of iron and other metal ions in neurodegenerative diseases

Lhermitte, J., Kraus, W. M. & McAlpine, D. Original Papers: On the occurrence of abnormal deposits of iron in the brain in parkinsonism with special reference to its localisation. J. Neurol. Psychopathol. 5, 195–208 (1924).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Dexter, D. T. et al. Increased nigral iron content in postmortem parkinsonian brain. Lancet 2, 1219–1220 (1987).

Article  CAS  PubMed  Google Scholar 

Dexter, D. T. et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114, 1953–1975 (1991).

Article  PubMed  Google Scholar 

Dexter, D. T. et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson’s disease. J. Neurochem 52, 1830–1836 (1989).

Article  CAS  PubMed  Google Scholar 

Mann, V. M. et al. Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann. Neurol. 36, 876–881 (1994).

Article  CAS  PubMed  Google Scholar 

Sofic, E. et al. Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J. Neural Transm. 74, 199–205 (1988).

Article  CAS  PubMed  Google Scholar 

Sofic, E. et al. Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J. Neurochem 56, 978–982 (1991).

Article  CAS  PubMed  Google Scholar 

Riederer, P. et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem 52, 515–520 (1989).

Article  CAS  PubMed  Google Scholar 

Antonini, A. et al. T2 relaxation time in patients with Parkinson’s disease. Neurology 43, 697–700 (1993).

Article  CAS  PubMed  Google Scholar 

Castellani, R. J., Siedlak, S. L., Perry, G. & Smith, M. A. Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol. 100, 111–114 (2000).

Article  CAS  PubMed  Google Scholar 

Chen, B. et al. Interactions between iron and alpha-synuclein pathology in Parkinson’s disease. Free Radic. Biol. Med. 141, 253–260 (2019).

Article  CAS  PubMed  Google Scholar 

Berg, D. et al. Iron accumulation in the substantia nigra in rats visualized by ultrasound. Ultrasound Med. Biol. 25, 901–904 (1999).

Article  CAS  PubMed  Google Scholar 

Berg, D. et al. Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch. Neurol. 59, 999–1005 (2002).

Article  PubMed  Google Scholar 

Kaur, D. et al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37, 899–909 (2003).

Article  CAS  PubMed  Google Scholar 

Devos, D. et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid. Redox Signal 21, 195–210 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Oakley, A. E. et al. Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68, 1820–1825 (2007).

Article  CAS  PubMed  Google Scholar 

Iranzo, A. et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol. 12, 443–453 (2013).

Article  PubMed  Google Scholar 

Sun, J. et al. Quantitative evaluation of iron content in idiopathic rapid eye movement sleep behavior disorder. Mov. Disord. 35, 478–485 (2020).

Article  CAS  PubMed  Google Scholar 

Tambasco, N. et al. T2*-weighted MRI values correlate with motor and cognitive dysfunction in Parkinson’s disease. Neurobiol. Aging 80, 91–98 (2019).

Article  PubMed  Google Scholar 

Maass, F. et al. Cerebrospinal fluid iron-ferritin ratio as a potential progression marker for Parkinson’s disease. Mov. Disord. 36, 2967–2969 (2021).

Article  CAS  PubMed  Google Scholar 

Do Van, B. et al. Ferroptosis, a newly characterized form of cell death in Parkinson’s disease that is regulated by PKC. Neurobiol. Dis. 94, 169–178 (2016).

Article  PubMed  Google Scholar 

Tang, F. et al. Inhibition of ACSL4 alleviates Parkinsonism phenotypes by reduction of lipid reactive oxygen species. Neurotherapeutics 20, 1154–1166 (2023).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shen, Q. Q. et al. Cell senescence induced by toxic interaction between alpha-synuclein and iron precedes nigral dopaminergic neuron loss in a mouse model of Parkinson’s disease. Acta Pharm. Sin. 45, 268–281 (2024).

Article  CAS  Google Scholar 

Goodman, L. Alzheimer’s disease; a clinico-pathologic analysis of twenty-three cases with a theory on pathogenesis. J. Nerv. Ment. Dis. 118, 97–130 (1953).

Article  CAS  PubMed  Google Scholar 

Hallgren, B. & Sourander, P. The non-haemin iron in the cerebral cortex in Alzheimer’s disease. J. Neurochem. 5, 307–310 (1960).

Article  CAS  PubMed  Google Scholar 

Crapper McLachlan, D. R. et al. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337, 1304–1308 (1991).

Article  CAS  PubMed  Google Scholar 

Bartzokis, G. et al. In vivo evaluation of brain iron in Alzheimer’s disease and normal subjects using MRI. Biol. Psychiatry 35, 480–487 (1994).

Article  CAS  PubMed  Google Scholar 

Raven, E. P. et al. Increased iron levels and decreased tissue integrity in hippocampus of Alzheimer’s disease detected in vivo with magnetic resonance imaging. J. Alzheimers Dis. 37, 127–136 (2013).

Article  CAS  PubMed  Google Scholar 

Smith, M. A., Harris, P. L., Sayre, L. M. & Perry, G. Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl Acad. Sci. USA 94, 9866–9868 (1997).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Rottkamp, C. A. et al. Redox-active iron mediates amyloid-beta toxicity. Free Radic. Biol. Med. 30, 447–450 (2001).

Article  CAS  PubMed  Google Scholar 

Ayton, S. et al. Cerebral quantitative susceptibility mapping predicts amyloid-beta-related cognitive decline. Brain 140, 2112–2119 (2017).

Article  PubMed  Google Scholar 

Ayton, S. et al. Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol. Psychiatry 25, 2932–2941 (2020).

Article  CAS  PubMed  Google Scholar 

Spotorno,

留言 (0)

沒有登入
gif