An insight for the inhibition of anxiolytic and anti-convulsant effects in zebrafish using the curcumins via exploring molecular docking and molecular dynamics simulations

Testa SM, Brandt J (2010) Do patients with psychogenic nonepileptic seizures have positive covert attitudes toward sickness? Epilepsy Behav 19(3):323–327. https://doi.org/10.1016/J.YEBEH.2010.07.014

Article  PubMed  Google Scholar 

Gurgu R, Ciobanu A, Danasel R, Panea C (2021) Psychiatric comorbidities in adult patients with epilepsy (asystematic review). Exp Ther Med 22:909. https://doi.org/10.3892/etm.2021.10341

Article  PubMed  PubMed Central  Google Scholar 

da Xavier JC et al (2021) Anxiolytic-like and anticonvulsant effect in adult zebrafish (Danio rerio) through GABAergic system and molecular docking study of chalcone derived from natural products. Biointerface Res Appl Chem 11(6):14021–14031. https://doi.org/10.33263/BRIAC116.1402114031

Article  Google Scholar 

Ochoa-De La Paz LD et al (2021) The role of GABA neurotransmitter in the human central nervous system, physiology, and pathophysiology. Rev Mex Neurocienc 22(2):67-76. https://doi.org/10.24875/RMN.20000050

Google Scholar 

de Leon AS, Tadi P (2023) Biochemistry, gamma aminobutyric acid. StatPearl. https://www.ncbi.nlm.nih.gov/books/NBK551683/.

Treiman DM (2001) GABAergic mechanisms in epilepsy. Epilepsia 42(S3):8–12. https://doi.org/10.1046/J.1528-1157.2001.042SUPPL.3008.X

Article  PubMed  Google Scholar 

Perucca E, Bialer M, White HS (2023) New GABA-targeting therapies for the treatment of seizures and epilepsy: I Role of GABA as a modulator of seizure activity and recently approved medications acting on the GABA system. CNS Drugs 37(9):755–779. https://doi.org/10.1007/S40263-023-01027-2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nuss P (2015) Anxiety disorders and GABA neurotransmission: a disturbance of modulation. Neuropsychiatr Dis Treat 11:165–175. https://doi.org/10.2147/NDT.S58841

Article  PubMed  PubMed Central  Google Scholar 

Storici P et al (2004) Structures of γ-aminobutyric acid (GABA) aminotransferase, a pyridoxal 5′-phosphate, and [2Fe–2S] cluster-containing enzyme, complexed with γ-ethynyl-GABA and with the antiepilepsy drug vigabatrin. J Biol Chem 279(1):363–373. https://doi.org/10.1074/jbc.M305884200

Article  CAS  PubMed  Google Scholar 

Allen MJ, Sabir S, Sharma S (2023) GABA receptor. Trends Pharmacol Sci 2(C):62–64. https://doi.org/10.1016/0165-6147(81)90264-9

Article  Google Scholar 

Silverman RB (2018) Design and mechanism of GABA aminotransferase inactivators. Treatments for epilepsies and addictions. Chem Rev 118(7):4037–4070. https://doi.org/10.1021/acs.chemrev.8b00009

Article  CAS  PubMed  PubMed Central  Google Scholar 

da Silva AW et al (2020) Anxiolytic-like effect of Azadirachta indica A. Juss. (Neem, Meliaceae) bark on adult zebrafish (Danio rerio): participation of the serotoninergic and GABAergic systems. Pharm Pharmacol Int J 8(4):256–263. https://doi.org/10.15406/PPIJ.2020.08.00303

Article  Google Scholar 

Kundap UP, Kumari Y, Othman I, Shaikh MF (2017) Zebrafis as a model for epilepsy-induced cognitive dysfunction: a pharmacological, biochemical and behavioral approach. Front Pharmacol 8:515. https://doi.org/10.3389/FPHAR.2017.00515/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

Ferreira MKA et al (2021) Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy Behav 117:107881. https://doi.org/10.1016/J.YEBEH.2021.107881

Article  PubMed  Google Scholar 

Jung MJ, Lippert B, Metcalf BW, Böhlen P, Schechter PJ (1977) γ-Vinyl GABA (4-amino-hex-5-enoic acid), a new selective irreversible inhibitor of GABA-T: effects on brain GABA metabolism in mice1. J Neurochem 29(5):797–802. https://doi.org/10.1111/J.1471-4159.1977.TB10721.X

Article  CAS  PubMed  Google Scholar 

Waterhouse EJ, Mims KN, Gowda SN (2009) Treatment of refractory complex partial seizures: role of vigabatrin. Neuropsychiatr Dis Treat 5:505–505. https://doi.org/10.2147/ndt.s5236

Shrivastava SK et al (2022) Synthesis, characterization, and biological evaluation of some novel ϒ-aminobutyric acid aminotransferase (GABA-AT) inhibitors. Med Chem Res 31(9):1594–1610. https://doi.org/10.1007/s00044-022-02935-6

Article  CAS  Google Scholar 

Lee H et al (2015) Mechanism of inactivation of γ-aminobutyric acid aminotransferase by (1S, 3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115). J Am Chem Soc 137(7):2628–2640. https://doi.org/10.1021/JA512299N

Article  CAS  PubMed  PubMed Central  Google Scholar 

Feja M et al (2021) OV329, a novel highly potent γ-aminobutyric acid aminotransferase inactivator, induces pronounced anticonvulsant effects in the pentylenetetrazole seizure threshold test and in amygdala-kindled rats. Epilepsia 62(12):3091–3104. https://doi.org/10.1111/EPI.17090

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vijayakumar S, Kasthuri G, Prabhu S, Manogar P, Parameswari N (2018) Screening and identification of novel inhibitors against human 4-aminobutyrate-aminotransferase: a computational approach. Egypt J Basic Appl Sci 5(3):210–219. https://doi.org/10.1016/j.ejbas.2018.05.008

Article  Google Scholar 

Garodia P, Hegde M, Kunnumakkara AB, Aggarwal BB (2023) Curcumin, inflammation, and neurological disorders: how are they linked? Integr Med Res. 12(3):100968. https://doi.org/10.1016/j.imr.2023.100968

Article  PubMed  PubMed Central  Google Scholar 

Jain M et al (2024) In silico and in vitro profiling of curcumin and its derivatives as a potent acetylcholinesterase inhibitor. Biocatal Agric Biotechnol 56:1878–8181. https://doi.org/10.1016/j.bcab.2024.103022

Article  CAS  Google Scholar 

Hussain H et al (2021) Neuroprotective potential of synthetic mono-carbonyl curcumin analogs assessed by molecular docking studies. Molecules 26(23):7168. https://doi.org/10.3390/MOLECULES26237168

Article  CAS  PubMed  PubMed Central  Google Scholar 

Contreras-Puente N, Pérez-Orozco D, Camacho-Día F (2022) Curcumin analogues as promissory compounds for inhibition of β-secretase, γ-secretase and GSK-3β implicated at Alzheimer disease: in silico study. Biomed Pharmacol J 15(1):445–452. https://doi.org/10.13005/BPJ/2384

Article  Google Scholar 

Mills N (2009) ChemDraw Ultra 10.0 CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www.cambridgesoft.com. Commercial Price: $1910 for download, $2150 for CD-ROM; Academic Price: $710 for download, $800 for CD-ROM. J Am Chem Soc 128(41):13649–13650. https://doi.org/10.1021/JA0697875

Ferreira MKA et al (2021) Chalcones reverse the anxiety and convulsive behavior of adult zebrafish. Epilepsy Behav. https://doi.org/10.1016/j.yebeh.2021.107881

Article  PubMed  Google Scholar 

El-Hachem N, Haibe-Kains B, Khalil A, Kobeissy FH, Nemer G (N.D.) Chapter 20 AutoDock and AutoDockTools for protein–ligand docking: beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) as a case study. In: Methods in molecular biology, 1598: p 391-403. https://doi.org/10.1007/978-1-4939-6952-4_20

Das M (2023) Molecular docking study: targeting sickle cell anemia using active phytochemical compounds from zanthoxylum zanthoxyloides. Innovare J Med Sci 11:2023. https://doi.org/10.22159/ijms.2023v11i3.47983

Article  Google Scholar 

Morris GM et al (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/JCC.21256

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. https://doi.org/10.1002/JCC.21334

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eberhardt J, Santos-Martins D, Tillack AF, Forli S (2021) AutoDock Vina 1.2.0: new docking methods, expanded force field, and Python bindings. J Chem Inf Model 61(8):3891–3898. https://doi.org/10.1021/ACS.JCIM.1C00203/SUPPL_FILE/CI1C00203_SI_002.ZIP

Article  CAS  PubMed  PubMed Central  Google Scholar 

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem 31(2):455. https://doi.org/10.1002/JCC.21334

Article  CAS  PubMed  PubMed Central  Google Scholar 

Singh S, Bajpai U, Lynn AM (2014) Structure based virtual screening to identify inhibitors against MurE Enzyme of Mycobacterium tuberculosis using AutoDock Vina. Bioinformat

留言 (0)

沒有登入
gif