Targeting ABCD1-ACOX1-MET/IGF1R axis suppresses multiple myeloma

Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. Am J Hematol. 2022;97:1086–107.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bhatt P, Kloock C, Comenzo R. Relapsed/Refractory Multiple Myeloma: A Review of Available Therapies and Clinical Scenarios Encountered in Myeloma Relapse. Curr Oncol. 2023;30:2322–47.

Article  PubMed  PubMed Central  Google Scholar 

Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Anderson KC, Richardson PG. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017;36:561–84.

Article  CAS  PubMed  Google Scholar 

Rafae A, van Rhee F, Al Hadidi S. Perspectives on the Treatment of Multiple Myeloma. Oncologist. 2024;29:200–12.

Article  PubMed  Google Scholar 

Robak P, Drozdz I, Szemraj J, Robak T. Drug resistance in multiple myeloma. Cancer Treat Rev. 2018;70:199–208.

Article  CAS  PubMed  Google Scholar 

DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7:11–20.

Article  CAS  PubMed  Google Scholar 

Weir P, Donaldson D, McMullin MF, Crawford L. Metabolic alterations in multiple myeloma: from oncogenesis to proteasome inhibitor resistance. Cancers. 2023;15:1682.

Lipchick BC, Utley A, Han Z, Moparthy S, Yun DH, Bianchi-Smiraglia A, et al. The fatty acid elongase ELOVL6 regulates bortezomib resistance in multiple myeloma. Blood Adv. 2021;5:1933–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Longo J, Smirnov P, Li Z, Branchard E, van Leeuwen JE, Licht JD, et al. The mevalonate pathway is an actionable vulnerability of t(4;14)-positive multiple myeloma. Leukemia. 2021;35:796–808.

Article  CAS  PubMed  Google Scholar 

Torcasio R, Gallo Cantafio ME, Ikeda RK, Ganino L, Viglietto G, Amodio N. Lipid metabolic vulnerabilities of multiple myeloma. Clin Exp Med. 2023;23:3373–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

García-Ortiz A, Rodríguez-García Y, Encinas J, Maroto-Martín E, Castellano E, Teixidó J, et al. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression. Cancers. 2021;13:217.

Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. Mol Biomed. 2024;5:25.

Article  PubMed  PubMed Central  Google Scholar 

Bolomsky A, Young RM. Pathogenic signaling in multiple myeloma. Semin Oncol. 2022;49:27–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Giannoni P, de Totero D. The HGF/c-MET axis as a potential target to overcome survival signals and improve therapeutic efficacy in multiple myeloma. Cancer Drug Resist. 2021;4:923–33.

PubMed  PubMed Central  Google Scholar 

Gambella M, Palumbo A, Rocci A. MET/HGF pathway in multiple myeloma: from diagnosis to targeted therapy? Expert Rev Mol Diagn. 2015;15:881–93.

Article  CAS  PubMed  Google Scholar 

Heredia-Guerrero SC, Evers M, Keppler S, Schwarzfischer M, Fuhr V, Rauert-Wunderlich H, et al. Functional Investigation of IGF1R Mutations in Multiple Myeloma. Cancers. 2024;16:2139.

Vishwamitra D, George SK, Shi P, Kaseb AO, Amin HM. Type I insulin-like growth factor receptor signaling in hematological malignancies. Oncotarget. 2017;8:1814–44.

Article  PubMed  Google Scholar 

Dolgin E. IGF-1R drugs travel from cancer cradle to Graves. Nat Biotechnol. 2020;38:385–8.

Article  CAS  PubMed  Google Scholar 

Dong Y, Xu J, Sun B, Wang J, Wang Z. MET-Targeted Therapies and Clinical Outcomes: A Systematic Literature Review. Mol Diagn Ther. 2022;26:203–27.

Article  PubMed  PubMed Central  Google Scholar 

George KS, Wu S. Lipid raft: A floating island of death or survival. Toxicol Appl Pharmacol. 2012;259:311–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang Y, Li X, Becker KA, Gulbins E. Ceramide-enriched membrane domains-structure and function. Biochim Biophys Acta. 2009;1788:178–83.

Article  CAS  PubMed  Google Scholar 

Isik OA, Cizmecioglu O. Rafting on the Plasma Membrane: Lipid Rafts in Signaling and Disease. Adv Exp Med Biol. 2023;1436:87–108.

Article  CAS  PubMed  Google Scholar 

Li B, Qin Y, Yu X, Xu X, Yu W. Lipid raft involvement in signal transduction in cancer cell survival, cell death and metastasis. Cell Prolif. 2022;55:e13167.

Article  CAS  PubMed  Google Scholar 

Casaletto JB, McClatchey AI. Spatial regulation of receptor tyrosine kinases in development and cancer. Nat Rev Cancer. 2012;12:387–400.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bocharov EV, Sharonov GV, Bocharova OV, Pavlov KV. Conformational transitions and interactions underlying the function of membrane embedded receptor protein kinases. Biochim Biophys Acta Biomembr. 2017;1859:1417–29.

Article  CAS  PubMed  Google Scholar 

Sviridov D, Mukhamedova N, Miller YI. Lipid rafts as a therapeutic target. J Lipid Res. 2020;61:687–95.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tsukamoto S, Hirotsu K, Kumazoe M, Goto Y, Sugihara K, Suda T, et al. Green tea polyphenol EGCG induces lipid-raft clustering and apoptotic cell death by activating protein kinase Cδ and acid sphingomyelinase through a 67 kDa laminin receptor in multiple myeloma cells. Biochem J. 2012;443:525–34.

Article  CAS  PubMed  Google Scholar 

Scheel-Toellner D, Wang K, Singh R, Majeed S, Raza K, Curnow SJ, et al. The death-inducing signalling complex is recruited to lipid rafts in Fas-induced apoptosis. Biochem Biophys Res Commun. 2002;297:876–9.

Article  CAS  PubMed  Google Scholar 

Berthier A, Lemaire-Ewing S, Prunet C, Monier S, Athias A, Bessède G, et al. Involvement of a calcium-dependent dephosphorylation of BAD associated with the localization of Trpc-1 within lipid rafts in 7-ketocholesterol-induced THP-1 cell apoptosis. Cell Death Differ. 2004;11:897–905.

Article  CAS  PubMed  Google Scholar 

Janas E, Priest R, Wilde JI, White JH, Malhotra R. Rituxan (anti-CD20 antibody)-induced translocation of CD20 into lipid rafts is crucial for calcium influx and apoptosis. Clin Exp Immunol. 2005;139:439–46.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gajate C, Mollinedo F. Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts. Blood. 2007;109:711–9.

Article  CAS  PubMed  Google Scholar 

Xu ZX, Ding T, Haridas V, Connolly F, Gutterman JU. Avicin D, a plant triterpenoid, induces cell apoptosis by recruitment of Fas and downstream signaling molecules into lipid rafts. PLoS One. 2009;4:e8532.

Article  PubMed  PubMed Central  Google Scholar 

Reis-Sobreiro M, Gajate C, Mollinedo F. Involvement of mitochondria and recruitment of Fas/CD95 signaling in lipid rafts in resveratrol-mediated antimyeloma and antileukemia actions. Oncogene. 2009;28:3221–34.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif