Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47.
Article PubMed PubMed Central Google Scholar
Jongen-Lavrencic M, Grob T, Hanekamp D, Kavelaars FG, Al Hinai A, Zeilemaker A, et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N. Engl J Med. 2018;378:1189–99.
Article CAS PubMed Google Scholar
Shlush LI, Mitchell A, Heisler L, Abelson S, Ng SWK, Trotman-Grant A, et al. Tracing the origins of relapse in acute myeloid leukaemia to stem cells. Nature. 2017;547:104–8.
Article CAS PubMed Google Scholar
Stelmach P, Trumpp A. Leukemic stem cells and therapy resistance in acute myeloid leukemia. Haematologica. 2023;108:353–66.
Article CAS PubMed PubMed Central Google Scholar
Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med. 2011;17:1086–93.
Article CAS PubMed Google Scholar
Ng SW, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N, et al. A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature. 2016;540:433–37.
Article CAS PubMed Google Scholar
Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–48.
Article CAS PubMed Google Scholar
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3:730–37.
Article CAS PubMed Google Scholar
Dick JE. Stem cell concepts renew cancer research. Blood. 2008;112:4793–807.
Article CAS PubMed Google Scholar
van Gils N, Denkers F, Smit L. Escape From Treatment; the Different Faces of Leukemic Stem Cells and Therapy Resistance in Acute Myeloid Leukemia. Front Oncol. 2021;11:659253.
Article PubMed PubMed Central Google Scholar
Ishikawa F, Yoshida S, Saito Y, Hijikata A, Kitamura H, Tanaka S, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25:1315–21.
Article CAS PubMed Google Scholar
Valent P, Sadovnik I, Eisenwort G, Bauer K, Herrmann H, Gleixner KV, et al. Immunotherapy-Based Targeting and Elimination of Leukemic Stem Cells in AML and CML. Int J Mol Sci. 2019;20:4233.
Article CAS PubMed PubMed Central Google Scholar
Zhang CC, Yan Z, Pascual B, Jackson-Fisher A, Huang DS, Zong Q, et al. Gemtuzumab Ozogamicin (GO) Inclusion to Induction Chemotherapy Eliminates Leukemic Initiating Cells and Significantly Improves Survival in Mouse Models of Acute Myeloid Leukemia. Neoplasia. 2018;20:1–11.
Jiang YP, Liu BY, Zheng Q, Panuganti S, Chen R, Zhu J, et al. CLT030, a leukemic stem cell-targeting CLL1 antibody-drug conjugate for treatment of acute myeloid leukemia. Blood Adv. 2018;2:1738–49.
Article CAS PubMed PubMed Central Google Scholar
Zheng B, Yu SF, Del Rosario G, Leong SR, Lee GY, Vij R, et al. An Anti-CLL-1 Antibody-Drug Conjugate for the Treatment of Acute Myeloid Leukemia. Clin Cancer Res. 2019;25:1358–68.
Article CAS PubMed Google Scholar
Dutta D, Pan P, Fleming R, Andrade-Campos M, Belova E, Wheeler J, et al. First Disclosure of AZD9829, a TOP1i-ADC Targeting CD123: Promising Preclinical Activity in AML Models with Minimal Effect on Healthy Progenitors. Blood. 2023;142:5957–57.
Stelte-Ludwig B, Schomber T, Izumi R, Wong H, Frigault MM, Rebstock A-S, et al. Selectivity and Safety of VIP943: A Novel CD123-Targeting Antibody-Drug Conjugate (ADC) Using a Proprietary Linker and Payload Class. Blood. 2023;142:1435–35.
Li F, Sutherland MK, Yu C, Walter RB, Westendorf L, Valliere-Douglass J, et al. Characterization of SGN-CD123A, A Potent CD123-Directed Antibody–Drug Conjugate for Acute Myeloid Leukemia. Mol Cancer Therapeutics. 2018;17:554–64.
Kovtun Y, Jones GE, Adams S, Harvey L, Audette CA, Wilhelm A, et al. A CD123-targeting antibody-drug conjugate, IMGN632, designed to eradicate AML while sparing normal bone marrow cells. Blood Adv. 2018;2:848–58.
Article CAS PubMed PubMed Central Google Scholar
van der Lee M, van Achtenberg T, Brouwers-Vos A, van der Vleuten M, Kappers W, Verheijden G, et al. Potent in Vitro and In Vivo Efficacy of BYON4413, a Duba-Based Antibody-Drug Conjugate Targeting CD123 in Acute Myeloid Leukemia. Blood. 2023;142:2795.
Haubner S, Perna F, Köhnke T, Schmidt C, Berman S, Augsberger C, et al. Coexpression profile of leukemic stem cell markers for combinatorial targeted therapy in AML. Leukemia. 2019;33:64–74.
Article CAS PubMed Google Scholar
Brauchle B, Goldstein RL, Karbowski CM, Henn A, Li C-M, Bücklein VL, et al. Characterization of a Novel FLT3 BiTE Molecule for the Treatment of Acute Myeloid Leukemia. Mol Cancer Therapeutics. 2020;19:1875–88.
Yeung YA, Krishnamoorthy V, Dettling D, Sommer C, Poulsen K, Ni I, et al. An Optimized Full-Length FLT3/CD3 Bispecific Antibody Demonstrates Potent Anti-leukemia Activity and Reversible Hematological Toxicity. Mol Ther. 2020;28:889–900.
Article CAS PubMed PubMed Central Google Scholar
Yoshimoto G, Miyamoto T, Jabbarzadeh-Tabrizi S, Iino T, Rocnik JL, Kikushige Y, et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood. 2009;114:5034–43.
Article CAS PubMed PubMed Central Google Scholar
Levis M. Midostaurin approved for FLT3-mutated AML. Blood. 2017;129:3403–06.
Article CAS PubMed Google Scholar
Pulte ED, Norsworthy KJ, Wang Y, Xu Q, Qosa H, Gudi R, et al. FDA Approval Summary: Gilteritinib for Relapsed or Refractory Acute Myeloid Leukemia with a FLT3 Mutation. Clin Cancer Res. 2021;27:3515–21.
Article CAS PubMed PubMed Central Google Scholar
Erba HP, Montesinos P, Kim HJ, Patkowska E, Vrhovac R, Žák P, et al. Quizartinib plus chemotherapy in newly diagnosed patients with FLT3-internal-tandem-duplication-positive acute myeloid leukaemia (QuANTUM-First): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2023;401:1571–83.
Article CAS PubMed Google Scholar
Jetani H, Garcia-Cadenas I, Nerreter T, Thomas S, Rydzek J, Meijide JB, et al. CAR T-cells targeting FLT3 have potent activity against FLT3(-)ITD(+) AML and act synergistically with the FLT3-inhibitor crenolanib. Leukemia. 2018;32:1168–79.
Article CAS PubMed Google Scholar
Roas M, Vick B, Kasper MA, Able M, Polzer H, Gerlach M, et al. Targeting FLT3 with a new-generation antibody-drug conjugate in combination with kinase inhibitors for treatment of AML. Blood. 2023;141:1023–35.
Article CAS PubMed Google Scholar
Yao H-P, Zhao H, Hudson R, Tong X-M, Wang M-H. Duocarmycin-based antibody–drug conjugates as an emerging biotherapeutic entity for targeted cancer therapy: Pharmaceutical strategy and clinical progress. Drug Discov Today. 2021;26:1857–74.
Article CAS PubMed Google Scholar
Marcucci F, Caserta CA, Romeo E, Rumio C. Antibody-Drug Conjugates (ADC) Against Cancer Stem-Like Cells (CSC)-Is There Still Room for Optimism? Front Oncol. 2019;9:167.
留言 (0)