Hollenberg, S.M., and M. Singer. 2021. Pathophysiology of sepsis-induced cardiomyopathy. Nature Reviews Cardiology 18 (6): 424–434.
Vieillard-Baron, A. 2011. Septic cardiomyopathy. Annals of Intensive Care 1 (1): 6.
Article PubMed PubMed Central Google Scholar
Boyd, J.H., S. Mathur, Y. Wang, R.M. Bateman, and K.R. Walley. 2006. Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovascular Research 72 (3): 384–393.
Article CAS PubMed Google Scholar
Conway-Morris, A., J. Wilson, and M. Shankar-Hari. 2018. Immune activation in Sepsis. Critical Care Clinics 34 (1): 29–42.
Kumar, A., V. Thota, L. Dee, J. Olson, E. Uretz, and J.E. Parrillo. 1996. Tumor necrosis factor alpha and interleukin 1beta are responsible for in vitro myocardial cell depression induced by human septic shock serum. The Journal of Experimental Medicine 183 (3): 949–958.
Article CAS PubMed Google Scholar
Venet, F., F. Davin, C. Guignant, A. Larue, M. Cazalis, R. Darbon, C. Allombert, B. Mougin, C. Malcus, F. Poitevin-Later, A. Lepape, and G. Monneret. 2010. Early assessment of leukocyte alterations at diagnosis of septic shock. Shock 34 (4): 358–363.
Article CAS PubMed Google Scholar
Yende, S., W. Linde-Zwirble, F. Mayr, L.A. Weissfeld, S. Reis, and D.C. Angus. 2014. Risk of cardiovascular events in survivors of severe sepsis. American Journal of Respiratory and Critical Care Medicine 189 (9): 1065–1074.
Article PubMed PubMed Central Google Scholar
Pratz, K.W., J. Cortes, G.J. Roboz, N. Rao, O. Arowojolu, A. Stine, Y. Shiotsu, A. Shudo, S. Akinaga, D. Small, J.E. Karp, and M. Levis. 2009. A pharmacodynamic study of the FLT3 inhibitor KW-2449 yields insight into the basis for clinical response. Blood, The Journal of the American Society of Hematology 113 (17): 3938–3946.
Ahmadabad, H.N., A. Abbaspour, Y. Panahi, S. Tahmasebi, N. Hossein-Khannazer, S. Afraei, H. Miladi, M. Goudarzvand, A.N. Kamali, Y. Bagheri, R. Yazdani, M.M. Di Fiore, and G. Azizi. 2021. Anti-inflammatory effect of KW-2449 on autoimmune encephalomyelitis: An experimental study on mice. Endocrine, Metabolic & Immune Disorders Drug Targets 21 (9): 1590–1597.
Rui, C., S. Shi, W. Ren, X. Qin, C. Zhuang, X. Chen, G. Chen, J. Yu, H. Wang, and Z. Cai. 2021. The multitargeted kinase inhibitor KW-2449 ameliorates cisplatin-induced nephrotoxicity by targeting RIPK1-mediated necroptosis. Biochemical Pharmacology 188: 114542.
Article CAS PubMed Google Scholar
Wang, Q., Q. Ye, X. Xi, X. Cao, X. Wang, M. Zhang, Y. Xu, T. Deng, X. Deng, G. Zhang, and C. Xiao. 2023. KW2449 ameliorates collagen-induced arthritis by inhibiting RIPK1-dependent necroptosis. Frontiers in Immunology 14: 1135014.
Article CAS PubMed PubMed Central Google Scholar
Tang, A., X. Liu, N. Gao, T. Hu, S. Yan, and G. Zhang. 2023. Dl-3-n-butylphthalide improves intestinal microcirculation disorders in septic rats by regulating the PI3K/AKT signaling pathway and autophagy. International Immunopharmacology 118: 110049.
Article CAS PubMed Google Scholar
Kang, W., Y. Cheng, F. Zhou, L. Wang, L. Zhong, H.T. Li, X. Wang, S. Dang, and X. Wang. 2019. Neuregulin-1 protects cardiac function in septic rats through multiple targets based on endothelial cells. International Journal of Molecular Medicine 44 (4): 1255–1266.
CAS PubMed PubMed Central Google Scholar
Langmead, B., and S.L. Salzberg. 2012. Fast gapped-read alignment with bowtie 2. Nature Methods 9 (4): 357–359.
Article CAS PubMed PubMed Central Google Scholar
Kim, D., B. Langmead, and S.L. Salzberg. 2015. HISAT: A fast spliced aligner with low memory requirements. Nature Methods 12 (4): 357–360.
Article CAS PubMed PubMed Central Google Scholar
Zhou, Y., B. Zhou, L. Pache, M. Chang, A.H. Khodabakhshi, O. Tanaseichuk, C. Benner, and S.K. Chanda. 2019. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications 10 (1): 1523.
Article PubMed PubMed Central Google Scholar
Bu, D., H. Luo, P. Huo, Z. Wang, S. Zhang, Z. He, Y. Wu, L. Zhao, J. Liu, J. Guo, S. Fang, W. Cao, L. Yi, Y. Zhao, and L. Kong. 2021. KOBAS-i: Intelligent prioritization and exploratory visualization of biological functions for gene enrichment analysis. Nucleic Acids Research 49 (W1): W317–W325.
Article CAS PubMed PubMed Central Google Scholar
Szklarczyk, D., A.L. Gable, D. Lyon, A. Junge, S. Wyder, J. Huerta-Cepas, M. Simonovic, N.T. Doncheva, J.H. Morris, P. Bork, L.J. Jensen, and C.V. Mering. 2019. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47 (D1): D607–D613.
Article CAS PubMed Google Scholar
Thygesen, K., J.S. Alpert, A.S. Jaffe, B.R. Chaitman, J.J. Bax, D.A. Morrow, and H.D. White. 2018. Fourth universal definition of myocardial infarction (2018). Journal of the American College of Cardiology 72 (18): 2231–2264.
Turner, A., M. Tsamitros, and R. Bellomo. 1999. Myocardial cell injury in septic shock. Critical Care Medicine 27 (9): 1775–1780.
Article CAS PubMed Google Scholar
Maeder, M., T. Fehr, H. Rickli, and P. Ammann. 2006. Sepsis-associated myocardial dysfunction: Diagnostic and prognostic impact of cardiac troponins and natriuretic peptides. Chest 129 (5): 1349–1366.
Article CAS PubMed Google Scholar
Wroblewski, F., and K.F. Gregory. 1961. Lactic dehydrogenase isozymes and their distribution in normal tissues and plasma and in disease states. Annals of the New York Academy of Sciences 94: 912–932.
Article CAS PubMed Google Scholar
Kotoh, K., M. Kato, M. Kohjima, M. Tanaka, M. Miyazaki, K. Nakamura, M. Enjoji, M. Nakamuta, and R. Takayanagi. 2011. Lactate dehydrogenase production in hepatocytes is increased at an early stage of acute liver failure. Experimental and Therapeutic Medicine 2 (2): 195–199.
Article CAS PubMed PubMed Central Google Scholar
Angus, D.C., and T. van der Poll. 2013. Severe sepsis and septic shock. The New England Journal of Medicine 369 (9): 840–851.
Article CAS PubMed Google Scholar
Nicolás-Ávila, J.A., A. Hidalgo, and I. Ballesteros. 2018. Specialized functions of resident macrophages in brain and heart. Journal of Leukocyte Biology 104 (4): 743–756.
Bajpai, G., A. Bredemeyer, W. Li, K. Zaitsev, A.L. Koenig, I. Lokshina, J. Mohan, B. Ivey, H. Hsiao, C. Weinheimer, A. Kovacs, S. Epelman, M. Artyomov, D. Kreisel, and K.J. Lavine. 2019. Tissue resident CCR2- and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circulation Research 124 (2): 263–278.
Article CAS PubMed PubMed Central Google Scholar
Jia, D., S. Chen, P. Bai, C. Luo, J. Liu, A. Sun, and J. Ge. 2022. Cardiac resident macrophage-derived Legumain improves cardiac repair by promoting clearance and degradation of apoptotic Cardiomyocytes after myocardial infarction. Circulation 145 (20): 1542–1556.
Article CAS PubMed Google Scholar
Li, Y., M. Dong, Q. Wang, S. Kumar, R. Zhang, W. Cheng, J. Xiang, G. Wang, K. Ouyang, R. Zhou, Y. Xie, Y. Lu, J. Yi, H. Duan, and J. Liu. 2021. HIMF deletion ameliorates acute myocardial ischemic injury by promoting macrophage transformation to reparative subtype. Basic Research in Cardiology 116 (1): 30.
Article CAS PubMed PubMed Central Google Scholar
Chen, J., J. Lai, L. Yang, G. Ruan, S. Chaugai, Q. Ning, C. Chen, and D.W. Wang. 2016. Trimetazidine prevents macrophage-mediated septic myocardial dysfunction via activation of the histone deacetylase sirtuin 1. British Journal of Pharmacology 173 (3): 545–561.
留言 (0)