Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. 2024 Heart disease and stroke statistics: a report of US and global data from the American heart association. Circulation. 2024;149:e347-913.
Seifu DG, Purnama A, Mequanint K, Mantovani D. Small-diameter vascular tissue engineering. Nat Rev Cardiol. 2013;10:410–21.
Guo HF, Dai WW, Qian DH, Qin ZX, Lei Y, Hou XY, et al. A simply prepared small-diameter artificial blood vessel that promotes in situ endothelialization. Acta Biomater. 2017;54:107–16.
Rickel AP, Deng X, Engebretson D, Hong Z. Electrospun nanofiber scaffold for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021;129:112373.
Article PubMed PubMed Central Google Scholar
Schwartz BG, Economides C, Mayeda GS, Burstein S, Kloner RA. The endothelial cell in health and disease: its function, dysfunction, measurement and therapy. Int J Impot Res. 2010;22:77–90.
Steucke KE, Tracy PV, Hald ES, Hall JL, Alford PW. Vascular smooth muscle cell functional contractility depends on extracellular mechanical properties. J Biomech. 2015;48:3044–51.
Article PubMed PubMed Central Google Scholar
Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol. 2011;209:139–51.
Arora S, Lin S, Cheung C, Yim EKF, Toh YC. Topography elicits distinct phenotypes and functions in human primary and stem cell derived endothelial cells. Biomaterials. 2020;234: 119747.
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun nanofibers for improved angiogenesis: promises for tissue engineering applications. Nanomaterials (Basel). 2020;10:1609.
Chen X, Chen D, Ai X, Hu R, Zhang H. A new method for the preparation of three-layer vascular stents: a preliminary study on the preparation of biomimetic three-layer vascular stents using a three-stage electrospun membrane. Biomed Mater. 2020;15: 055010.
Norouzi SK, Shamloo A. Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods. Mater Sci Eng C Mater Biol Appl. 2019;94:1067–76.
Shi J, Teng Y, Li D, He J, Midgley AC, Guo X, et al. Biomimetic tri-layered small-diameter vascular grafts with decellularized extracellular matrix promoting vascular regeneration and inhibiting thrombosis with the salidroside. Mater Today Bio. 2023;21:100709.
Article PubMed PubMed Central Google Scholar
Wu P, Nakamura N, Morita H, Nam K, Fujisato T, Kimura T, et al. A hybrid small-diameter tube fabricated from decellularized aortic intima-media and electrospun fiber for artificial small-diameter blood vessel. J Biomed Mater Res A. 2019;107:1064–70.
Guo S, Jiang Y, Jiao J, Shi Y, Zhu T, Li L. Electrospun gelatin-based biomimetic scaffold with spatially aligned and three-layer architectures for vascular tissue engineering. Int J Biol Macromol. 2023;242:125039.
Uttayarat P, Perets A, Li M, Pimton P, Stachelek SJ, Alferiev I, et al. Micropatterning of three-dimensional electrospun polyurethane vascular grafts. Acta Biomater. 2010;6:4229–37.
Jiao J, Zhao X, Li L, Zhu T, Chen X, Ding Q, et al. The promotion of vascular reconstruction by hierarchical structures in biodegradable small-diameter vascular scaffolds. Biomater Adv. 2024;162:213926.
Wu H, Fan J, Chu CC, Wu J. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J Mater Sci Mater Med. 2010;21:3207–15.
Wu T, Zhang J, Wang Y, Li D, Sun B, El-Hamshary H, et al. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl. 2018;82:121–9.
Tsai SW, Yu YL, Hsu FY. Fabrication of polycaprolactone tubular scaffolds with an orthogonal-bilayer structure for smooth muscle cells. Mater Sci Eng C Mater Biol Appl. 2019;100:308–14.
Deepthi S, Nivedhitha Sundaram M, Vijayan P, Nair SV, Jayakumar R. Engineering poly(hydroxy butyrate-co-hydroxy valerate) based vascular scaffolds to mimic native artery. Int J Biol Macromol. 2018;109:85–98.
Luo FF, Liu P, Qiu TC, Zhai YP, Wang X, Guo T, et al. Effects of femtosecond laser micropatterning on the surface properties and cellular response of biomedical tantalum-blended composites. J Cent South Univ. 2022;29:3376–84.
Liu P, Qiu T, Liu J, Long X, Wang X, Nie H, et al. Mechanically enhanced and osteobioactive synthetic periosteum via development of poly(ε-caprolactone)/microtantalum composite. Colloids Surf B Biointerfaces. 2023;231:113537.
Wang ZY, Lim J, Ho YS, Zhang QY, Chong MS, Tang M, Hong MH, Chan JK, Teoh SH, Thian ES. Biomimetic three-dimensional anisotropic geometries by uniaxial stretching of poly(ε-caprolactone) films: degradation and mesenchymal stem cell responses. J Biomed Mater Res A. 2014;102:2197–207.
Bhattarai N, Li Z, Gunn J, Leung M, Cooper A, Edmondson D, et al. Natural-synthetic polyblend nanofibers for biomedical applications. Adv Mater. 2009;21:2792–7.
Neves SC, Moreira Teixeira LS, Moroni L, Reis RL, Van Blitterswijk CA, Alves NM, et al. Chitosan/poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials. 2011;32:1068–79.
Sarasam AR, Krishnaswamy RK, Madihally SV. Blending chitosan with polycaprolactone: effects on physicochemical and antibacterial properties. Biomacromol. 2006;7:1131–8.
Feltz KP, Kalaf EAG, Chen C, Martin RS, Sell SA. A review of electrospinning manipulation techniques to direct fiber deposition and maximize pore size. Electrospinning. 2017;1:46–61.
Qiu X, Lee BL, Ning X, Murthy N, Dong N, Li S. End-point immobilization of heparin on plasma-treated surface of electrospun polycarbonate-urethane vascular graft. Acta Biomater. 2017;51:138–47.
Article PubMed PubMed Central Google Scholar
Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv. 2010;28:325–47.
Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Acc Chem Res. 2017;50:1976–87.
Article PubMed PubMed Central Google Scholar
Vaquette C, Cooper-White JJ. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater. 2011;7:2544–57.
Niu Z, Wang X, Meng X, Guo X, Jiang Y, Xu Y, et al. Controllable fiber orientation and nonlinear elasticity of electrospun nanofibrous small diameter tubular scaffolds for vascular tissue engineering. Biomed Mater. 2019;14:035006.
Dorati R, Chiesa E, Pisani S, Genta I, Modena T, Bruni G, et al. The effect of process parameters on alignment of tubular electrospun nanofibers for tissue regeneration purposes. J Drug Deliv Sci Techn. 2020;58: 101781.
Enis IY, Sadikoglu TG. Design parameters for electrospun biodegradable vascular grafts. J Ind Text. 2018;47:1528083716654470.
Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma ZW. An introduction to electrospinning and nanofibers. 2005. World Scientific Publishing Co., Pte Ltd. https://doi.org/10.1142/9789812567611
Huang ZM, Zhang Y, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Techn. 2003;63:2223–53.
Sencadas V, Correia DM, Areias AC, Botelho G, Fonseca AM, Neves IC, et al. Determination of the parameters affecting electrospun chitosan fiber size distribution
留言 (0)