Enhancing Cardiomyocyte Purity through Lactate-Based Metabolic Selection

Song K, Nam YJ, Luo X, Qi X, Tan W, Huang GN, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599–604.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen Y, Yang Z, Zhao ZA, Shen Z. Direct reprogramming of fibroblasts into cardiomyocytes. Stem Cell Res Ther. 2017;8:118.

Article  PubMed  PubMed Central  Google Scholar 

Ieda M. Key regulators of cardiovascular differentiation and regeneration: harnessing the potential of direct reprogramming to treat heart failure. J Card Fail. 2020;26:80–4.

Article  PubMed  Google Scholar 

Kim HJ, Oh HJ, Park JS, Lee JS, Kim JH, Park KH. Direct conversion of human dermal fibroblasts into cardiomyocyte-like cells using CiCMC nanogels coupled with cardiac transcription factors and a nucleoside drug. Adv Sci (Weinh). 2020;7:1901818.

Article  CAS  PubMed  Google Scholar 

Yamakawa H, Ieda M. Cardiac regeneration by direct reprogramming in this decade and beyond. Inflamm Regen. 2021;41:20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jang M, Kim HN. From single- to multi-organ-on-a-chip system for studying metabolic diseases. BioChip J. 2023;17:133–46.

Article  CAS  Google Scholar 

Jeon HR, Kang JI, Bhang SH, Park KM, Kim DI. Transplantation of stem cell spheroid-laden 3-dimensional patches with bioadhesives for the treatment of myocardial infarction. Biomater Res. 2024;28:0007.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jin G, Kim D, Mun S, Bang S. Passive-flow-based MPS: emerging physiological flow-mimetic platforms for studying effects of flow on single tissues and inter-tissue interactions. BioChip J. 2024;18:186–210.

Article  CAS  Google Scholar 

Wolfram JA, Donahue JK. Gene therapy to treat cardiovascular disease. J Am Heart Assoc. 2013;2: e000119.

Article  PubMed  PubMed Central  Google Scholar 

Sadahiro T, Yamanaka S, Ieda M. Direct cardiac reprogramming: progress and challenges in basic biology and clinical applications. Circ Res. 2015;116:1378–91.

Article  CAS  PubMed  Google Scholar 

Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, et al. Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails. Cell Res. 2015;25:1013–24.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li X, Zuo X, Jing J, Ma Y, Wang J, Liu D, et al. Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell. 2015;17:195–203.

Article  CAS  PubMed  Google Scholar 

Cao N, Huang Y, Zheng J, Spencer CI, Zhang Y, Fu JD, et al. Conversion of human fibroblasts into functional cardiomyocytes by small molecules. Science. 2016;352:1216–20.

Article  CAS  PubMed  Google Scholar 

Takeda Y, Harada Y, Yoshikawa T, Dai P. Chemical compound-based direct reprogramming for future clinical applications. Biosci Rep 2018;38:BSR20171650.

Google Scholar 

Wang J, Gu S, Liu F, Chen Z, Xu H, Liu Z, et al. Reprogramming of fibroblasts into expandable cardiovascular progenitor cells via small molecules in xeno-free conditions. Nat Biomed Eng. 2022;6:403–20.

Article  CAS  PubMed  Google Scholar 

Testa G, Russo M, Di Benedetto G, Barbato M, Parisi S, Pirozzi F, et al. Bmi1 inhibitor PTC-209 promotes chemically-induced direct cardiac reprogramming of cardiac fibroblasts into cardiomyocytes. Sci Rep. 2020;10:7129.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang J, Wang Q, Cao N. Generation of expandable cardiovascular progenitor cells from mouse and human fibroblasts via direct chemical reprogramming. STAR Protoc. 2022;3: 101908.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun L, Zhang D, Qin L, Liu Q, Wang G, Shi D, et al. Rapid direct conversion of bovine non-adipogenic fibroblasts into adipocyte-like cells by a small-molecule cocktail. Front Cell Dev Biol. 2023;11:1020965.

Article  PubMed  PubMed Central  Google Scholar 

Thoma EC, Merkl C, Heckel T, Haab R, Knoflach F, Nowaczyk C, et al. Chemical conversion of human fibroblasts into functional schwann cells. Stem Cell Rep. 2014;3:539–47.

Article  CAS  Google Scholar 

Park G, Yoon BS, Kim YS, Choi SC, Moon JH, Kwon S, et al. Conversion of mouse fibroblasts into cardiomyocyte-like cells using small molecule treatments. Biomaterials. 2015;54:201–12.

Article  CAS  PubMed  Google Scholar 

Schwach V, Passier R. Generation and purification of human stem cell-derived cardiomyocytes. Differentiation. 2016;91:126–38.

Article  CAS  PubMed  Google Scholar 

Skelton RJ, Costa M, Anderson DJ, Bruveris F, Finnin BW, Koutsis K, et al. SIRPA, VCAM1 and CD34 identify discrete lineages during early human cardiovascular development. Stem Cell Res. 2014;13:172–9.

Article  CAS  PubMed  Google Scholar 

Ban K, Wile B, Kim S, Park HJ, Byun J, Cho KW, et al. Purification of cardiomyocytes from differentiating pluripotent stem cells using molecular beacons that target cardiomyocyte-specific mRNA. Circulation. 2013;128:1897–909.

Article  CAS  PubMed  Google Scholar 

Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol. 2011;301:H2006–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Uosaki H, Fukushima H, Takeuchi A, Matsuoka S, Nakatsuji N, Yamanaka S, et al. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression. PLoS ONE. 2011;6: e23657.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tohyama S, Hattori F, Sano M, Hishiki T, Nagahata Y, Matsuura T, et al. Distinct metabolic flow enables large-scale purification of mouse and human pluripotent stem cell-derived cardiomyocytes. Cell Stem Cell. 2013;12:127–37.

Article  CAS  PubMed  Google Scholar 

Fuerstenau-Sharp M, Zimmermann ME, Stark K, Jentsch N, Klingenstein M, Drzymalski M, et al. Generation of highly purified human cardiomyocytes from peripheral blood mononuclear cell-derived induced pluripotent stem cells. PLoS ONE. 2015;10: e0126596.

Article  PubMed  PubMed Central  Google Scholar 

Lin B, Lin X, Stachel M, Wang E, Luo Y, Lader J, et al. Culture in glucose-depleted medium supplemented with fatty acid and 3,3’,5-triiodo-l-thyronine facilitates purification and maturation of human pluripotent stem cell-derived cardiomyocytes. Front Endocrinol. 2017;8:253.

Article  Google Scholar 

Piquereau J, Ventura-Clapier R. Maturation of cardiac energy metabolism during perinatal development. Front Physiol. 2018;9:959.

Article  PubMed  PubMed Central  Google Scholar 

Batho CAP, Mills RJ, Hudson JE. Metabolic regulation of human pluripotent stem cell-derived cardiomyocyte maturation. Curr Cardiol Rep. 2020;22:73.

Article  PubMed  Google Scholar 

Ascuitto RJ, Ross-Ascuitto NT. Substrate metabolism in the developing heart. Semin Perinatol. 1996;20:542–63.

Article  CAS  PubMed  Google Scholar 

留言 (0)

沒有登入
gif