Rapid Video Analysis for Contraction Synchrony of Human Induced Pluripotent Stem Cells-Derived Cardiac Tissues

Lee S, Serpooshan V, Tong X, Venkatraman S, Lee M, Lee J, et al. Contractile force generation by 3D HiPSC-derived cardiac tissues is enhanced by rapid establishment of cellular interconnection in matrix with muscle-mimicking stiffness. Biomaterials. 2017;131:111–20.

Article  PubMed  PubMed Central  Google Scholar 

Ribeiro AJS, Schwab O, Mandegar MA, Ang Y-S, Conklin BR, Srivastava D, et al. Multi-imaging method to assay the contractile mechanical output of micropatterned human iPSC-derived cardiac myocytes. Circ Res. 2017;120:1572–83.

Article  PubMed  PubMed Central  Google Scholar 

Chen H, Luo Z, Lin X, Zhu Y, Zhao Y. Sensors-integrated organ-on-a-chip for biomedical applications. Nano Res. 2023;16:10072–99.

Article  Google Scholar 

Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater. 2017;16:303–8.

Article  PubMed  Google Scholar 

Zhao Y, Wang EY, Davenport LH, Liao Y, Yeager K, Vunjak-Novakovic G, et al. A multimaterial microphysiological platform enabled by rapid casting of elastic microwires. Adv Healthc Mater. 2019;8:1801187.

Article  Google Scholar 

Fu F, Shang L, Chen Z, Yu Y, Zhao Y. Bioinspired living structural color hydrogels. Sci Robot. 2018;3:eaar8580.

Article  PubMed  Google Scholar 

Dou W, Malhi M, Cui T, Wang M, Wang T, Shan G, et al. A carbon-based biosensing platform for simultaneously measuring the contraction and electrophysiology of iPSC-cardiomyocyte monolayers. ACS Nano. 2022;16:11278–90.

Article  PubMed  Google Scholar 

Wang L, Dou W, Malhi M, Zhu M, Liu H, Plakhotnik J, et al. Microdevice platform for continuous measurement of contractility, beating rate, and beating rhythm of human-induced pluripotent stem cell-cardiomyocytes inside a controlled incubator environment. ACS Appl Mater Interfaces. 2018;10:21173–83.

Article  PubMed  Google Scholar 

Zhang YS, Arneri A, Bersini S, Shin S-R, Zhu K, Goli-Malekabadi Z, et al. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials. 2016;110:45–59.

Article  PubMed  PubMed Central  Google Scholar 

Zhang YS, Ribas J, Nadhman A, Aleman A, Selimović Š, Lesher-Perez SC, et al. A cost-effective fluorescence mini-microscope with adjustable magnifications for biomedical applications. Lab Chip. 2015;00:11.

Google Scholar 

Liu L, Xu F, Jin H, Qiu B, Yang J, Zhang W, et al. Integrated manufacturing of suspended and aligned nanofibrous scaffold for structural maturation and synchronous contraction of HiPSC-derived cardiomyocytes. Bioengineering. 2023;10:702.

Article  PubMed  PubMed Central  Google Scholar 

Zhang YS, Aleman J, Shin SR, Kilic T, Kim D, Mousavi Shaegh SA, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci U S A. 2017;114:E2293–302. https://doi.org/10.1073/pnas.1612906114.

Article  PubMed  PubMed Central  Google Scholar 

Hossain MM, Shimizu E, Saito M, Ramachandra Rao S, Yamaguchi Y, Tamiya E. Non-invasive characterization of mouse embryonic stem cell derived cardiomyocytes based on the intensity variation in digital beating video. The Analyst. 2010;135:1624.

Article  PubMed  Google Scholar 

Sala L, van Meer BJ, Tertoolen LGJ, Bakkers J, Bellin M, Davis RP, et al. MUSCLEMOTION: A versatile open software tool to quantify cardiomyocyte and cardiac muscle contraction in vitro and in vivo. Circ Res. 2017;122:e5–16.

PubMed  Google Scholar 

Kijlstra JD, Hu D, Mittal N, Kausel E, van der Meer P, Garakani A, et al. Integrated analysis of contractile kinetics, force generation, and electrical activity in single human stem cell-derived cardiomyocytes. Stem Cell Rep. 2015;5:P1226-1238.

Article  Google Scholar 

Ribeiro AJS, Ang Y-S, Fu J-D, Rivas RN, Mohamed TMA, Higgs GC, et al. Contractility of single cardiomyocytes differentiated from pluripotent stem cells depends on physiological shape and substrate stiffness. Proc Natl Acad Sci. 2015;112:12705–10.

Article  PubMed  PubMed Central  Google Scholar 

Neal D, Sakar MS, Ong L-LS, Harry Asada H. Formation of elongated fascicle-inspired 3D tissues consisting of high-density, aligned cells using sacrificial outer molding. Lab Chip. 2014;14:1907–16.

Article  PubMed  Google Scholar 

Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang H-Y, Speicher DW, et al. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: scar-like rigidity inhibits beating. J Cell Sci. 2008;121:3794–802.

Article  PubMed  Google Scholar 

Bazan C, Barba DT, Blomgren P, Paolini P. Image processing techniques for assessing contractility in isolated adult cardiac myocytes. Int J Biomed Imaging. 2009;2009:1–11.

Article  Google Scholar 

Huebsch N, Loskill P, Mandegar MA, Marks NC, Sheehan AS, Ma Z, et al. Automated video-based analysis of contractility and calcium flux in human-induced pluripotent stem cell-derived cardiomyocytes cultured over different spatial scales. Tissue Eng Part C Methods. 2015;21:467–79.

Article  PubMed  PubMed Central  Google Scholar 

Chen A, Lee E, Tu R, Santiago K, Grosberg A, Fowlkes C, et al. Integrated platform for functional monitoring of biomimetic heart sheets derived from human pluripotent stem cells. Biomaterials. 2014;35:675–83.

Article  PubMed  Google Scholar 

Ma Z, Koo S, Finnegan MA, Loskill P, Huebsch N, Marks NC, et al. Three-dimensional filamentous human diseased cardiac tissue model. Biomaterials. 2014;35:1367–77.

Article  PubMed  Google Scholar 

Hayakawa T, Kunihiro T, Dowaki S, Uno H, Matsui E, Uchida M, et al. Noninvasive evaluation of contractile behavior of cardiomyocyte monolayers based on motion vector analysis. Tissue Eng Part C Methods. 2011;18:21–32.

Article  PubMed  Google Scholar 

Shapira-Schweitzer K, Seliktar D. Matrix stiffness affects spontaneous contraction of cardiomyocytes cultured within a PEGylated fibrinogen biomaterial. Acta Biomater. 2007;3:33–41.

Article  PubMed  Google Scholar 

Legant WR, Pathak A, Yang MT, Deshpande VS, McMeeking RM, Chen CS. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc Natl Acad Sci. 2009;106:10097–102.

Article  PubMed  PubMed Central  Google Scholar 

Taylor RE, Kim K, Sun N, Park S-J, Sim JY, Fajardo G, et al. Sacrificial layer technique for axial force post assay of immature cardiomyocytes. Biomed Microdevices. 2013;15:171–81.

Article  PubMed  PubMed Central  Google Scholar 

Rodriguez ML, Graham BT, Pabon LM, Han SJ, Murry CE, Sniadecki NJ. Measuring the contractile forces of human induced pluripotent stem cell-derived cardiomyocytes with arrays of microposts. J Biomech Eng. 2014;136: 051005.

Article  PubMed  Google Scholar 

Ribeiro AJS, Denisin AK, Wilson RE, Pruitt BL. For whom the cells pull: hydrogel and micropost devices for measuring traction forces. Methods. 2016;94:51–64.

Article  PubMed  Google Scholar 

Ribeiro AJS, Zaleta-Rivera K, Ashley EA, Pruitt BL. Stable, covalent attachment of laminin to microposts improves the contractility of mouse neonatal cardiomyocytes. ACS Appl Mater Interfaces. 2014;6:15516–26.

Article  PubMed  PubMed Central  Google Scholar 

Fu J, Wang Y-K, Yang MT, Desai RA, Yu X, Liu Z, et al. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat Methods. 2010;7:733–6.

Article  PubMed  PubMed Central  Google Scholar 

Lebert J, Ravi N, Kensah G, Christoph J. Real-time optical mapping of contracting cardiac tissues with GPU-accelerated numerical motion tracking. Front Cardiovasc Med. 2022;9:787627.

Article  PubMed  PubMed Central  Google Scholar 

Bootman MD, Rietdorf K, Collins T, Walker S, Sanderson M. (2013) Ca 2+ -sensitive fluorescent dyes and intracellular Ca 2+ imaging. Cold Spring Harb Protoc. 2013;2:pdb.top066050.

Article  Google Scholar 

Bootman MD, Rietdorf K, Collins T, Walker S, Sanderson M (2024) Converting fluorescence data into Ca2+ concentration. Cold Spring Harb Protoc 2024.

Lin B, Lin X, Stachel M, Wang E, Luo Y, Lader J, et al. Culture in glucose-depleted medium supplemented with fatty acid and 3,3′,5-triiodo-l-thyronine facilitates purification and maturation of human pluripotent stem cell-derived cardiomyocytes. Front Endocrinol. 2017;8:253.

Article  Google Scholar 

Hurlburt HM, Aurigemma GP, Hill JC, Narayanan A, Gaasch WH, Vinch CS, et al. Direct ultrasound measurement of longitudinal, circumferential, and radial strain using 2-dimensional strain imaging in normal adults. Echocardiography. 2007;24:723–31.

Article  PubMed 

留言 (0)

沒有登入
gif