Endocrine and metabolic alterations in response to systemic inflammation and sepsis: a review article

Abe T, Ogura H, Shiraishi A, et al. Characteristics, management, and in-hospital mortality among patients with severe sepsis in intensive care units in Japan: the FORECAST study. Crit Care. 2018;22(1):322. https://doi.org/10.1186/s13054-018-2186-7.

Article  PubMed  PubMed Central  Google Scholar 

Achanti AT, Szerlip HM. Acid-base disorders in the critically Ill patient. Clin J Am Soc Nephrol. 2022. https://doi.org/10.2215/CJN.04500422.

Article  PubMed  PubMed Central  Google Scholar 

Agwunobi AO, Reid C, Maycock P, et al. Insulin resistance and substrate utilization in human endotoxemia. J Clin Endocrinol Metab. 2000;85(10):3770–8.

Article  PubMed  Google Scholar 

Alberti C, Brun-Buisson C, Burchardi H, et al. Erratum to: epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med. 2002;28(4):525–6. https://doi.org/10.1007/s00134-002-1284-8.

Article  Google Scholar 

Al-Kadi A, El-Daly M, El-Tahawy NFG, Khalifa MMA, Ahmed AF. Angiotensin aldosterone inhibitors improve survival and ameliorate kidney injury induced by sepsis through suppression of inflammation and apoptosis. Fundam Clin Pharmacol. 2022;36(2):286–95. https://doi.org/10.1111/fcp.12718.

Article  PubMed  Google Scholar 

American Diabetes Association. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. Diabetes Care. 2020;43(Suppl 1):S14–31. https://doi.org/10.2337/dc20-S002.

Article  Google Scholar 

Amunugama K, Pike DP, Ford DA. The lipid biology of sepsis. J Lipid Res. 2021;62:100090.

Article  PubMed  PubMed Central  Google Scholar 

Andreis DT, Singer M. Catecholamines for inflammatory shock: a Jekyll-and-Hyde conundrum. Intensive Care Med. 2016;42(9):1387–97. https://doi.org/10.1007/s00134-016-4249-z.

Article  PubMed  Google Scholar 

Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–51. https://doi.org/10.1056/NEJMra1208623.

Article  PubMed  Google Scholar 

Angus DC, Linde-Zwirble WT, Lidicker J, et al. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:13031310.

Article  Google Scholar 

Annane D, Sébille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA. 2002;288(7):862–71. https://doi.org/10.1001/jama.288.7.862.

Article  PubMed  Google Scholar 

Annane D, Pastores SM, Arlt W, et al. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a multispecialty task force of the society of critical care medicine (SCCM) and the European society of intensive care medicine (ESICM). Intensive Care Med. 2017;43(12):1781–92. https://doi.org/10.1007/s00134-017-4914-x.

Article  PubMed  Google Scholar 

Antonellis PJ, Hayes MP, Adams AC. fibroblast growth factor 21-null mice do not exhibit an impaired response to fasting. Front Endocrinol. 2016;7:77. https://doi.org/10.3389/fendo.2016.00077.

Article  Google Scholar 

Arabi YM, Jawdat D, Al-Dorzi HM, et al. Leptin, ghrelin, and leptin/ghrelin ratio in critically Ill patients. Nutrients. 2019;12(1):36. https://doi.org/10.3390/nu12010036.

Article  PubMed  PubMed Central  Google Scholar 

Arafah BM. Hypothalamic pituitary adrenal function during critical illness: limitations of current assessment methods. J Clin Endocrinol Metab. 2006;91(10):3725–45. https://doi.org/10.1210/jc.2006-0674.

Article  PubMed  Google Scholar 

Arnalich F, López J, Codoceo R, Jiménez M, Madero R, Montiel C. Relationship of plasma leptin to plasma cytokines and human survival in sepsis and septic shock. J Infect Dis. 1999;180(3):908–11. https://doi.org/10.1086/314963.

Article  PubMed  Google Scholar 

Aziz M, Jacob A, Yang WL, Matsuda A, Wang P. Current trends in inflammatory and immunomodulatory mediators in sepsis. J Leukoc Biol. 2013;93(3):329–42. https://doi.org/10.1189/jlb.0912437.

Article  PubMed  PubMed Central  Google Scholar 

Bauza-Martinez J, Aletti F, Pinto BB, et al. Proteolysis in septic shock patients: plasma peptidomic patterns are associated with mortality. Br J Anaesth. 2018;121(5):1065–74.

Article  PubMed  Google Scholar 

Benson DW, Hasselgren PO, Hiyama DT, James JH, Li S, Rigel DF, Fischer JE. Effect of sepsis on calcium uptake and content in skeletal muscle and regulation in vitro by calcium of total and myofibrillar protein breakdown in control and septic muscle: results from a preliminary study. Surgery. 1989;106(1):87–93.

PubMed  Google Scholar 

Bentham J, Rodriguez-Arnao J, Ross RJ. Acquired growth hormone resistance in patients with hypercatabolism. Horm Res. 1993;40(1–3):87–91. https://doi.org/10.1159/000183772.

Article  PubMed  Google Scholar 

Berneis K, Keller U. Metabolic actions of growth hormone: direct and indirect. Baillieres Clin Endocrinol Metab. 1996;10(3):337–52. https://doi.org/10.1016/s0950-351x(96)80470-8.

Article  PubMed  Google Scholar 

Bessey PQ, Watters JM, Aoki TT, Wilmore DW. Combined hormonal infusion simulates the metabolic response to injury. Ann Surg. 1984;200(3):264–81. https://doi.org/10.1097/00000658-198409000-00004.

Article  PubMed  PubMed Central  Google Scholar 

Bhattacharyya J, Thompson K, Sayeed MM. Calcium-dependent and calcium-independent protease activities in skeletal muscle during sepsis. Circ Shock. 1991;35(2):117–22.

PubMed  Google Scholar 

Bird JW, Carter JH, Triemer RE, Brooks RM, Spanier AM. Proteinases in cardiac and skeletal muscle. Fed Proc. 1980;39(1):20–5.

PubMed  Google Scholar 

Bone RC. Gram-negative sepsis: a dilemma of modern medicine. Clin Microbiol Rev. 1993;6(1):57–68. https://doi.org/10.1128/CMR.6.1.57.

Article  PubMed  PubMed Central  Google Scholar 

Boonen E, Van den Berghe G. Mechanisms in endocrinology: new concepts to further unravel adrenal insufficiency during critical illness. Eur J Endocrinol. 2016;175(1):R1–9. https://doi.org/10.1530/EJE-15-1098.

Article  PubMed  Google Scholar 

Boonen E, Vervenne H, Meersseman P, et al. Reduced cortisol metabolism during critical illness. N Engl J Med. 2013;368(16):1477–88. https://doi.org/10.1056/NEJMoa1214969.

Article  PubMed  PubMed Central  Google Scholar 

Boonen E, Meersseman P, Vervenne H, Meyfroidt G, Guïza F, Wouters PJ, Veldhuis JD, Van den Berghe G. Reduced nocturnal ACTH-driven cortisol secretion during critical illness. Am J Physiol Endocrinol Metab. 2014;306(8):E883–92. https://doi.org/10.1152/ajpendo.00009.2014.

Article  PubMed  PubMed Central  Google Scholar 

Bornstein SR, Licinio J, Tauchnitz R, et al. Plasma leptin levels are increased in survivors of acute sepsis: associated loss of diurnal rhythm in cortisol and leptin secretion. J Clin Endocrinol Metab. 1998;83(1):280–3. https://doi.org/10.1210/jcem.83.1.4610.

Article  PubMed  Google Scholar 

Breen KM, Karsch FJ. Does cortisol inhibit pulsatile luteinizing hormone secretion at the hypothalamic or pituitary level? Endocrinology. 2004;145(2):692–8. https://doi.org/10.1210/en.2003-1114.

Article  PubMed  Google Scholar 

Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, et al. Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med. 2008;358(2):125–39.

Article  PubMed  Google Scholar 

Busse LW, Schaich CL, Chappell MC, McCurdy MT, Staples EM, Teri Lohuis CD, Hinson JK, Severansky JE, Rothman RE, Wright DW, Marin GS, Khanna AK. Association, of active renin content with mortality in critically ill patients: a post-hoc analysis of the VICTAS trial. Crit Care Med. 2023;50:1–11.

Google Scholar 

Ceriello A, Genovese S, Mannucci E, Gronda E. Glucagon and heart in type 2 diabetes: new perspectives. Cardiovasc Diabetol. 2016;15(1):123. https://doi.org/10.1186/s12933-016-0440-3.

Article  PubMed  PubMed Central  Google Scholar 

Chang YW, Hung LC, Chen YC, et al. Insulin reduces inflammation by regulating the activation of the NLRP3 inflammasome. Front Immunol. 2021;11:587229. https://doi.org/10.3389/fimmu.2020.587229.

留言 (0)

沒有登入
gif