D-mannose promotes diabetic wound healing through inhibiting advanced glycation end products formation in keratinocytes

Faria A, Laher I, Fasipe B, Ayas NT. Impact of obstructive sleep apnea and current treatments on the development and progression of type 2 diabetes. Curr Diabetes Rev. 2022;18:e1308411217.

Article  Google Scholar 

Dardenne C, Salon M, Authier H, Meunier E, AlaEddine M, Bernad J, Bouschbacher M, Lefevre L, Pipy B, Coste A. Topical aspirin administration improves cutaneous Wound Healing in Diabetic mice through a phenotypic switch of Wound macrophages toward an anti-inflammatory and Proresolutive Profile characterized by LXA4 release. Diabetes. 2022;71:2181–96.

Article  PubMed  Google Scholar 

Hart T, Milner R, Cifu A. Management of a Diabetic Foot. JAMA. 2017;318:1387–8.

Article  PubMed  Google Scholar 

Ridiandries A, Tan J, Bursill CA. The role of chemokines in Wound Healing. INT J MOL SCI 2018;19.

Falanga V. Wound healing and its impairment in the diabetic foot. Lancet. 2005;366:1736–43.

Article  PubMed  Google Scholar 

Li G, Ko CN, Li D, Yang C, Wang W, Yang GJ, Di Primo C, Wong V, Xiang Y, Lin L, Ma DL, Leung CH. A small molecule HIF-1alpha stabilizer that accelerates diabetic wound healing. NAT COMMUN. 2021;12:3363.

Article  PubMed  PubMed Central  Google Scholar 

Fang WC, Lan CE. The epidermal keratinocyte as a therapeutic target for management of Diabetic wounds. INT J MOL SCI 2023;24.

Chen S, Zhu Y, Xu Q, Jiang Q, Chen D, Chen T, Xu X, Jin Z, He Q. Photocatalytic glucose depletion and hydrogen generation for diabetic wound healing. NAT COMMUN. 2022;13:5684.

Article  PubMed  PubMed Central  Google Scholar 

Khalid M, Petroianu G, Adem A. Advanced Glycation End products and Diabetes Mellitus: mechanisms and perspectives. Biomolecules 2022;12.

Chen CY, Zhang JQ, Li L, Guo MM, He YF, Dong YM, Meng H, Yi F. Advanced Glycation End products in the skin: Molecular mechanisms, methods of Measurement, and Inhibitory pathways. Front Med (Lausanne). 2022;9:837222.

Article  PubMed  Google Scholar 

Pastar I, Stojadinovic O, Tomic-Canic M. Role of keratinocytes in healing of chronic wounds. Surg Technol Int. 2008;17:105–12.

PubMed  Google Scholar 

Wang Y, Graves DT. Keratinocyte function in Normal and Diabetic wounds and Modulation by FOXO1. J DIABETES RES. 2020;2020:3714704.

Article  PubMed  PubMed Central  Google Scholar 

Lee EJ, Kim JY, Oh SH. Advanced glycation end products (AGEs) promote melanogenesis through receptor for AGEs. Sci Rep. 2016;6:27848.

Article  PubMed  PubMed Central  Google Scholar 

Zhang C, Ponugoti B, Tian C, Xu F, Tarapore R, Batres A, Alsadun S, Lim J, Dong G, Graves DT. FOXO1 differentially regulates both normal and diabetic wound healing. J CELL BIOL. 2015;209:289–303.

Article  PubMed  PubMed Central  Google Scholar 

Chen C, Ma C, Zhang Y, Zeng Y, Li Y, Wang W. Pioglitazone inhibits advanced glycation end product-induced TNF-alpha and MMP-13 expression via the antagonism of NF-kappaB activation in chondrocytes. Pharmacology. 2014;94:265–72.

Article  PubMed  Google Scholar 

Liang Y, Yang C, Lin Y, Parviz Y, Sun K, Wang W, Ren M, Yan L. Matrix metalloproteinase 9 induces keratinocyte apoptosis through FasL/Fas pathway in diabetic wound. Apoptosis. 2019;24:542–51.

Article  PubMed  Google Scholar 

Wetzler C, Kampfer H, Stallmeyer B, Pfeilschifter J, Frank S. Large and sustained induction of chemokines during impaired wound healing in the genetically diabetic mouse: prolonged persistence of neutrophils and macrophages during the late phase of repair. J INVEST DERMATOL. 2000;115:245–53.

Article  PubMed  Google Scholar 

Hosseini MN. The role of keratinocyte function on the defected diabetic wound healing. Int J Burns Trauma. 2021;11:430–41.

Google Scholar 

Zhang D, Chia C, Jiao X, Jin W, Kasagi S, Wu R, Konkel JE, Nakatsukasa H, Zanvit P, Goldberg N, Chen Q, Sun L, Chen ZJ, Chen W. D-mannose induces regulatory T cells and suppresses immunopathology. NAT MED. 2017;23:1036–45.

Article  PubMed  Google Scholar 

Zhang W, Cheng H, Gui Y, Zhan Q, Li S, Qiao W, Tong A. Mannose treatment: a Promising Novel Strategy to suppress inflammation. FRONT IMMUNOL. 2021;12:756920.

Article  PubMed  PubMed Central  Google Scholar 

Kranjcec B, Papes D, Altarac S. D-mannose powder for prophylaxis of recurrent urinary tract infections in women: a randomized clinical trial. WORLD J UROL. 2014;32:79–84.

Article  PubMed  Google Scholar 

Niehues R, Hasilik M, Alton G, Korner C, Schiebe-Sukumar M, Koch HG, Zimmer KP, Wu R, Harms E, Reiter K, von Figura K, Freeze HH, Harms HK, Marquardt T. Carbohydrate-deficient glycoprotein syndrome type ib. Phosphomannose isomerase deficiency and mannose therapy. J CLIN INVEST. 1998;101:1414–20.

Article  PubMed  PubMed Central  Google Scholar 

Hu M, Chen Y, Deng F, Chang B, Luo J, Dong L, Lu X, Zhang Y, Chen Z, Zhou J. D-Mannose regulates hepatocyte lipid metabolism via PI3K/Akt/mTOR signaling pathway and ameliorates hepatic steatosis in alcoholic liver disease. FRONT IMMUNOL. 2022;13:877650.

Article  PubMed  PubMed Central  Google Scholar 

Dong L, Xie J, Wang Y, Jiang H, Chen K, Li D, Wang J, Liu Y, He J, Zhou J, Zhang L, Lu X, Zou X, Wang XY, Wang Q, Chen Z, Zuo D. Mannose ameliorates experimental colitis by protecting intestinal barrier integrity. NAT COMMUN. 2022;13:4804.

Article  PubMed  PubMed Central  Google Scholar 

Luo J, Li Y, Zhai Y, Liu Y, Zeng J, Wang D, Li L, Zhu Z, Chang B, Deng F, Zhang J, Zhou J, Sun L. D-Mannose ameliorates DNCB-induced atopic dermatitis in mice and TNF-alpha-induced inflammation in human keratinocytes via mTOR/NF-kappaB pathway. INT IMMUNOPHARMACOL. 2022;113:109378.

Article  PubMed  Google Scholar 

Li S, Yang P, Ding X, Zhang H, Ding Y, Tan Q. Puerarin improves diabetic wound healing via regulation of macrophage M2 polarization phenotype. Burns Trauma. 2022;10:c46.

Article  Google Scholar 

Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta. 2011;1812:719–31.

Article  PubMed  Google Scholar 

Luo J, Li L, Chang B, Zhu Z, Deng F, Hu M, Yu Y, Lu X, Chen Z, Zuo D, Zhou J. Mannan-binding lectin via Interaction with Cell Surface Calreticulin promotes senescence of activated hepatic stellate cells to Limit Liver Fibrosis Progression. Cell Mol Gastroenterol Hepatol. 2022;14:75–99.

Article  PubMed  PubMed Central  Google Scholar 

Baxter EW, Graham AE, Re NA, Carr IM, Robinson JI, Mackie SL, Morgan AW. Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNgamma + LPS), M(IL-4) and M(IL-10) phenotypes. J IMMUNOL METHODS. 2020;478:112721.

Article  PubMed  Google Scholar 

Gonzalez PS, O’Prey J, Cardaci S, Barthet V, Sakamaki JI, Beaumatin F, Roseweir A, Gay DM, Mackay G, Malviya G, Kania E, Ritchie S, Baudot AD, Zunino B, Mrowinska A, Nixon C, Ennis D, Hoyle A, Millan D, McNeish IA, Sansom OJ, Edwards J, Ryan KM. Mannose impairs tumour growth and enhances chemotherapy. Nature. 2018;563:719–23.

Article  PubMed  Google Scholar 

Zhang J, Yang P, Liu D, Gao M, Wang J, Wang X, Liu Y, Zhang X. c-Myc upregulated by high glucose inhibits HaCaT differentiation by S100A6 transcriptional activation. Front Endocrinol (Lausanne). 2021;12:676403.

Article  PubMed  PubMed Central  Google Scholar 

Hu SC, Lan CE. High-glucose environment disturbs the physiologic functions of keratinocytes: focusing on diabetic wound healing. J DERMATOL SCI. 2016;84:121–7.

Article  PubMed  Google Scholar 

Ai YL, Wang WJ, Liu FJ, Fang W, Chen HZ, Wu LZ, Hong X, Zhu Y, Zhang CX, Liu LY, Hong WB, Zhou B, Chen QT, Wu Q. Mannose antagonizes GSDME-mediated pyroptosis through AMPK activated by metabolite GlcNAc-6P. CELL RES. 2023;33:904–22.

Article  PubMed  PubMed Central  Google Scholar 

Zhang R, Yang Y, Dong W, Lin M, He J, Zhang X, Tian T, Yang Y, Chen K, Lei QY, Zhang S, Xu Y, Lv L. D-mannose facilitates immunotherapy and radiotherapy of triple-negative breast cancer via degradation of PD-L1. Proc Natl Acad Sci U S A 2022;119.

Du F, Huang H, Cao Y, Ran Y, Wu Q, Chen B. Notoginsenoside R1 protects against high glucose-Induced Cell Injury through AMPK/Nrf2 and downstream HO-1 signaling. Front Cell Dev Biol. 2021;9:791643.

Article  PubMed  PubMed Central  Google Scholar 

Xiao F, Rui S, Zhang X, Ma Y, Wu X, Hao W, Huang G, Armstrong DG, Chen Q, Deng W. Accelerating diabetic wound healing with Ramulus Mori (Sangzhi) alkaloids via NRF2/HO-1/eNOS pathway. PHYTOMEDICINE. 2024;134:155990.

Li XY, Qian LL, Wu Y, Zhang YM, Dang SP, Liu XY, Tang X, Lu CY, Wang RX. Advanced glycation end products impair coronary artery BK channels via AMPK/Akt/FBXO32 signaling pathway. Diab Vasc Dis Res. 2023;20:1497039795.

Article  Google Scholar 

Li M, Cheng H, Tian D, Yang L, Du X, Pan Y, Zhang D, Mei X. D-Mannose suppres

留言 (0)

沒有登入
gif