Bromocriptine sensitivity in bromocriptine-induced drug-resistant prolactinomas is restored by inhibiting FGF19/FGFR4/PRL

Tritos NA, Miller KK (2023) Diagnosis and management of pituitary adenomas: a review. JAMA 329(16):1386–1398

PubMed  Google Scholar 

Tsukamoto T, Miki Y (2023) Imaging of pituitary tumors: an update with the 5th WHO classifications-part 1. Pituitary neuroendocrine tumor (PitNET)/pituitary adenoma. Jpn J Radiol 41(8):789–806

PubMed  PubMed Central  Google Scholar 

Huynh PP, Ishii LE, Ishii M (2021) Prolactinomas. JAMA 325(2):195

PubMed  Google Scholar 

Petersenn S, Fleseriu M, Casanueva FF et al (2023) Diagnosis and management of prolactin-secreting pituitary adenomas: a pituitary society international consensus statement. Nat Rev Endocrinol 19(12):722–740

PubMed  Google Scholar 

Maiter D (2019) Management of dopamine agonist-resistant prolactinoma. Neuroendocrinology 109(1):42–50

PubMed  Google Scholar 

Cheng YJ, Wang DP, Tang H et al (2024) Alternations of blood pressure following surgical or drug therapy for prolactinomas. Cancers 16(4):726

PubMed  PubMed Central  Google Scholar 

Filopanti M, Barbieri AM, Angioni AR et al (2008) Dopamine D2 receptor gene polymorphisms and response to cabergoline therapy in patients with prolactin-secreting pituitary adenomas. Pharm J 8(5):357–363

Google Scholar 

Wu ZB, Zheng WM, Su ZP et al (2010) Expression of D2RmRNA isoforms and ERmRNA isoforms in prolactinomas: correlation with the response to bromocriptine and with tumor biological behavior. J Neuro oncol 99(1):25–32

Google Scholar 

Peverelli E, Mantovani G, Vitali E et al (2012) Filamin-A is essential for dopamine d2 receptor expression and signaling in tumorous lactotrophs. J Clin Endocrinol Metab 97(3):967–977

PubMed  Google Scholar 

Wu N, Zhu D, Li J et al (2023) CircOMA1 modulates cabergoline resistance by downregulating ferroptosis in prolactinoma. J Endocrinol Invest 46(8):1573–1587

PubMed  Google Scholar 

Wu Z, Zheng Y, Xie W et al (2020) The long noncoding RNA-H19/miRNA-93a/ATG7 axis regulates the sensitivity of pituitary adenomas to dopamine agonists. Mol Cell Endocrinol 518:111033

PubMed  Google Scholar 

Missale C, Boroni F, Losa M et al (1993) Nerve growth factor suppresses the transforming phenotype of human prolactinomas. Proc Natl Acad Sci USA 90(17):7961–7965

PubMed  PubMed Central  Google Scholar 

Turner HE, Nagy Z, Gatter KC et al (2000) Angiogenesis in pituitary adenomas - relationship to endocrine function, treatment and outcome. J Endocrinol 165(2):475–481

PubMed  Google Scholar 

Cooper O, Bonert VS, Rudnick J et al (2021) EGFR/ErbB2-targeting lapatinib therapy for aggressive prolactinomas. J Clin Endocrinol Metab 106(2):e917–e925

PubMed  Google Scholar 

de Castro Moreira AR, Trarbach E, Bueno CBF et al (2023) PRL-R variants are not only associated with prolactinomas but also with dopamine agonist resistance. J Clin Endocrinol Metab 108(7):e450–e457

PubMed  Google Scholar 

Hu B, Mao ZG, Du Q et al (2019) miR-93-5p targets Smad7 to regulate the transforming growth factor-β1/Smad3 pathway and mediate fibrosis in drug-resistant prolactinoma. Brain Res Bull 149:21–31

PubMed  Google Scholar 

Tang C, Sun R, Wen G et al (2019) Bromocriptine and cabergoline induce cell death in prolactinoma cells via the ERK/EGR1 and AKT/mTOR pathway respectively. Cell Death Dis 10(5):335

PubMed  PubMed Central  Google Scholar 

McWhirter JR, Goulding M, Weiner JA et al (1997) A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbx1. Development 124(17):3221–3232

PubMed  Google Scholar 

Nishimura T, Utsunomiya Y, Hoshikawa M et al (1999) Structure and expression of a novel human FGF, FGF-19, expressed in the fetal brain. Biochem Biophys Acta 1444(1):148–151

PubMed  Google Scholar 

Xie MH, Holcomb I, Deuel B et al (1999) FGF-19, a novel fibroblast growth factor with unique specificity for FGFR4. Cytokine 11(10):729–735

PubMed  Google Scholar 

Fernandes-Freitas I, Owen BM (2015) Metabolic roles of endocrine fibroblast growth factors. Curr Opin Pharmacol 25:30–35

PubMed  Google Scholar 

Li C, Chen T, Liu J et al (2023) FGF19-induced inflammatory CAF promoted neutrophil extracellular trap formation in the liver metastasis of colorectal cancer. Adv Sci. https://doi.org/10.1002/advs.202302613

Article  Google Scholar 

Chia L, Wang B, Kim JH et al (2023) HMGA1 induces FGF19 to drive pancreatic carcinogenesis and stroma formation. J Clin Investig 133(6):e151601

PubMed  PubMed Central  Google Scholar 

Chen TL, Liu HD, Liu ZL et al (2021) FGF19 and FGFR4 promotes the progression of gallbladder carcinoma in an autocrine pathway dependent on GPBAR1-cAMP-EGR1 axis. Oncogene 40(30):4941–4953

PubMed  Google Scholar 

Wang J, Zhao H, Zheng L et al (2021) FGF19/SOCE/NFATc2 signaling circuit facilitates the self-renewal of liver cancer stem cells. Theranostics 11(10):5045–5060

PubMed  PubMed Central  Google Scholar 

Teng Y, Zhao H, Gao L et al (2017) FGF19 protects hepatocellular carcinoma cells against endoplasmic reticulum stress via activation of FGFR4-GSK3β-Nrf2 signaling. Can Res 77(22):6215–6225

Google Scholar 

Kim RD, Sarker D, Meyer T et al (2019) First-in-human phase I study of fisogatinib (BLU-554) validates aberrant FGF19 signaling as a driver event in hepatocellular carcinoma. Cancer Discov 9(12):1696–1707

PubMed  Google Scholar 

Yee NS (2018) Update in systemic and targeted therapies in gastrointestinal oncology. Biomedicines 6(1):34

PubMed  PubMed Central  Google Scholar 

Zhou M, Zhu S, Xu C et al (2023) A phase Ib/II study of BLU-554, a fibroblast growth factor receptor 4 inhibitor in combination with CS1001, an anti-PD-L1, in patients with locally advanced or metastatic hepatocellular carcinoma. Invest New Drugs 41(1):162–167

PubMed  Google Scholar 

Zhang X, Zhang X, Han R et al (2022) BLU-554, a selective inhibitor of FGFR4, exhibits anti-tumour activity against gastric cancer in vitro. Biochem Biophys Res Commun 595:22–27

PubMed  Google Scholar 

Chen XL, Chen J, Feng WB et al (2023) FGF19-mediated ELF4 overexpression promotes colorectal cancer metastasis through transactivating FGFR4 and SRC. Theranostics 13(4):1401–1418

PubMed  PubMed Central  Google Scholar 

Xie M, Lin Z, Ji X et al (2023) FGF19/FGFR4-mediated elevation of ETV4 facilitates hepatocellular carcinoma metastasis by upregulating PD-L1 and CCL2. J Hepatol 79(1):109–125

PubMed  Google Scholar 

He Q, Huang WJ, Liu DF et al (2021) Homeobox B5 promotes metastasis and poor prognosis in hepatocellular carcinoma, via FGFR4 and CXCL1 upregulation. Theranostics 11(12):5759–5777

PubMed  PubMed Central  Google Scholar 

Wang X, Luo L, Xu J et al (2024) Echinatin inhibits tumor growth and synergizes with chemotherapeutic agents against human bladder cancer cells by activating p38 and suppressing Wnt/β-catenin pathways. Genes Dis 11(2):1050–1065

PubMed  Google Scholar 

Benoit B, Meugnier E, Castelli M et al (2017) Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat Med 23(8):990–996

PubMed  Google Scholar 

Alijaj N, Moutel S, Gouveia ZL et al (2020) Novel FGFR4-targeting single-domain antibodies for multiple targeted therapies against rhabdomyosarcoma. Cancers 12(11):3313

PubMed  PubMed Central  Google Scholar 

Xiao Z, Liang J, Deng Q et al (2021) Pimozide augments bromocriptine lethality in prolactinoma cells and in a xenograft model via the STAT5/cyclin D1 and STAT5/Bcl-xL signaling pathways. Int J Mol Med 47(1):113–124

PubMed  Google Scholar 

Yu S, Zheng L, Asa SL et al (2002) Fibroblast growth factor receptor 4 (FGFR4) mediates signaling to the prolactin but not the FGFR4 promoter. Am J Physiol Endocrinol Metab 283(3):E490–E495

PubMed  Google Scholar 

Chen H, Li JL, Pi CX et al (2023) FGF19 induces the cell cycle arrest at G2-phase in chondrocytes. Cell Death Discov 9(1):250

PubMed  PubMed Central  Google Scholar 

Xin Z, Song X, Jiang B et al (2018) Blocking FGFR4 exerts distinct anti-tumorigenic effects in esophageal squamous cell carcinoma. Thorac Cancer 9(12):1687–1698

PubMed  PubMed Central  Google Scholar 

Auriemma RS, Pirchio R, Pivonello C et al (2023) Approach to the patient with prolactinoma. J Clin Endocrinol Metab 108(9):2400–2423

PubMed  PubMed Central  Google Scholar 

Urwyler SA, Karavitaki N (2023) Refractory lactotroph adenomas. Pituitary 26(3):273–277

PubMed  PubMed Central  Google Scholar 

Tomlinson E, Fu L, John L et al (2002) Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143(5):1741–1747

PubMed  Google Scholar 

Holt JA, Luo G, Billin AN et al (2003) Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 17(13):1581–1591

PubMed  PubMed Central 

留言 (0)

沒有登入
gif