Atherosclerosis in diabetes mellitus: novel mechanisms and mechanism-based therapeutic approaches

Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 157, 107843 (2019).

Article  PubMed  Google Scholar 

Wong, N. D. & Sattar, N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat. Rev. Cardiol. 20, 685–695 (2023).

Article  PubMed  Google Scholar 

Low Wang, C. C., Hess, C. N., Hiatt, W. R. & Goldfine, A. B. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus – mechanisms, management, and clinical considerations. Circulation 133, 2459–2502 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Wang, X., Shen, Y., Shang, M., Liu, X. & Munn, L. L. Endothelial mechanobiology in atherosclerosis. Cardiovasc. Res. 119, 1656–1675 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Davies, P. F., Civelek, M., Fang, Y. & Fleming, I. The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc. Res. 99, 315–327 (2013).

Article  PubMed  PubMed Central  Google Scholar 

Chiu, J. J. & Chien, S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91, 327–387 (2011).

Article  PubMed  Google Scholar 

Li, H., Zhou, W. Y., Xia, Y. Y. & Zhang, J. X. Endothelial mechanosensors for atheroprone and atheroprotective shear stress signals. J. Inflamm. Res. 15, 1771–1783 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Lee, D. Y. & Chiu, J. J. Atherosclerosis and flow: roles of epigenetic modulation in vascular endothelium. J. Biomed. Sci. 26, 56 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Tamargo, I. A., Baek, K. I., Kim, Y., Park, C. & Jo, H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat. Rev. Cardiol. 20, 738–753 (2023).

Article  PubMed  Google Scholar 

Zhou, M. et al. Wall shear stress and its role in atherosclerosis. Front. Cardiovasc. Med. 10, 1083547 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Poznyak, A. et al. The diabetes mellitus–atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci. 21, 1835 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Li, X. et al. Oxidative stress, endothelial dysfunction, and N-acetylcysteine in type 2 diabetes mellitus. Antioxid. Redox Signal. 40, 968–989 (2024).

Article  PubMed  Google Scholar 

Wang, E., Wang, H. & Chakrabarti, S. Endothelial-to-mesenchymal transition: an underappreciated mediator of diabetic complications. Front. Endocrinol. 14, 1050540 (2023).

Article  Google Scholar 

Thomas, M. C., Coughlan, M. T. & Cooper, M. E. The postprandial actions of GLP-1 receptor agonists: the missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metab. 35, 253–273 (2023).

Article  PubMed  Google Scholar 

Irace, C. et al. Empagliflozin influences blood viscosity and wall shear stress in subjects with type 2 diabetes mellitus compared with incretin-based therapy. Cardiovasc. Diabetol. 17, 52 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Li, S. et al. Recent advances of mechanosensitive genes in vascular endothelial cells for the formation and treatment of atherosclerosis. Genes. Dis. 11, 101046 (2024).

Article  PubMed  Google Scholar 

Luo, J. Y. et al. Induction of KLF2 by exercise activates eNOS to improve vasodilatation in diabetic mice. Diabetes 72, 1330–1342 (2023).

Article  PubMed  Google Scholar 

Haemmig, S. et al. Novel lesional transcriptional signature separates atherosclerosis with and without diabetes in Yorkshire swine and humans. Arterioscler. Thromb. Vasc. Biol. 41, 1487–1503 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Gray, S. P. et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 127, 1888–1902 (2013).

Article  PubMed  Google Scholar 

Jude, E. B., Douglas, J. T., Anderson, S. G., Young, M. J. & Boulton, A. J. Circulating cellular adhesion molecules ICAM-1, VCAM-1, P- and E-selectin in the prediction of cardiovascular disease in diabetes mellitus. Eur. J. Intern. Med. 13, 185–189 (2002).

Article  PubMed  Google Scholar 

Gray, S. P. et al. Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 36, 295–307 (2016).

Article  PubMed  Google Scholar 

Khan, A. W. et al. The role of activator protein-1 (AP-1) complex in diabetes associated atherosclerosis: insights from single cell RNA sequencing. Diabetes 73, 1495–1512 (2024).

Article  PubMed  Google Scholar 

Jiang, Y. Z., Manduchi, E., Jimenez, J. M. & Davies, P. F. Endothelial epigenetics in biomechanical stress: disturbed flow-mediated epigenomic plasticity in vivo and in vitro. Arterioscler. Thromb. Vasc. Biol. 35, 1317–1326 (2015).

Article  PubMed  PubMed Central  Google Scholar 

He, L., Zhang, C. L., Chen, Q., Wang, L. & Huang, Y. Endothelial shear stress signal transduction and atherogenesis: from mechanisms to therapeutics. Pharmacol. Ther. 235, 108152 (2022).

Article  PubMed  Google Scholar 

Kalluri, A. S. et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation 140, 147–163 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Andueza, A. et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 33, 108491 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Moonen, J.-R. A. J. et al. Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovasc. Res. 86, 506–515 (2010).

Article  PubMed  Google Scholar 

Kovacic, J. C. et al. Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 190–209 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Krenning, G., Moonen, J.-R. A. J., van Luyn, M. J. A. & Harmsen, M. C. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices. Biomaterials 29, 3703–3711 (2008).

Article  PubMed  Google Scholar 

Chen, P. Y. et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest. 125, 4514–4528 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Evrard, S. M. et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 7, 11853 (2016).

Article  PubMed  PubMed Central  Google Scholar 

Cooley, B. C. et al. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci. Transl. Med. 6, 227ra234 (2014).

Article  Google Scholar 

Depuydt, M. A. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Alsaigh, T., Evans, D., Frankel, D. & Torkamani, A. Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun. Biol. 5, 1084 (2022).

Article  PubMed  PubMed Centr

留言 (0)

沒有登入
gif