Saeedi, P. et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 157, 107843 (2019).
Wong, N. D. & Sattar, N. Cardiovascular risk in diabetes mellitus: epidemiology, assessment and prevention. Nat. Rev. Cardiol. 20, 685–695 (2023).
Low Wang, C. C., Hess, C. N., Hiatt, W. R. & Goldfine, A. B. Clinical update: cardiovascular disease in diabetes mellitus: atherosclerotic cardiovascular disease and heart failure in type 2 diabetes mellitus – mechanisms, management, and clinical considerations. Circulation 133, 2459–2502 (2016).
Article PubMed PubMed Central Google Scholar
Wang, X., Shen, Y., Shang, M., Liu, X. & Munn, L. L. Endothelial mechanobiology in atherosclerosis. Cardiovasc. Res. 119, 1656–1675 (2023).
Article PubMed PubMed Central Google Scholar
Davies, P. F., Civelek, M., Fang, Y. & Fleming, I. The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo. Cardiovasc. Res. 99, 315–327 (2013).
Article PubMed PubMed Central Google Scholar
Chiu, J. J. & Chien, S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91, 327–387 (2011).
Li, H., Zhou, W. Y., Xia, Y. Y. & Zhang, J. X. Endothelial mechanosensors for atheroprone and atheroprotective shear stress signals. J. Inflamm. Res. 15, 1771–1783 (2022).
Article PubMed PubMed Central Google Scholar
Lee, D. Y. & Chiu, J. J. Atherosclerosis and flow: roles of epigenetic modulation in vascular endothelium. J. Biomed. Sci. 26, 56 (2019).
Article PubMed PubMed Central Google Scholar
Tamargo, I. A., Baek, K. I., Kim, Y., Park, C. & Jo, H. Flow-induced reprogramming of endothelial cells in atherosclerosis. Nat. Rev. Cardiol. 20, 738–753 (2023).
Zhou, M. et al. Wall shear stress and its role in atherosclerosis. Front. Cardiovasc. Med. 10, 1083547 (2023).
Article PubMed PubMed Central Google Scholar
Poznyak, A. et al. The diabetes mellitus–atherosclerosis connection: the role of lipid and glucose metabolism and chronic inflammation. Int. J. Mol. Sci. 21, 1835 (2020).
Article PubMed PubMed Central Google Scholar
Li, X. et al. Oxidative stress, endothelial dysfunction, and N-acetylcysteine in type 2 diabetes mellitus. Antioxid. Redox Signal. 40, 968–989 (2024).
Wang, E., Wang, H. & Chakrabarti, S. Endothelial-to-mesenchymal transition: an underappreciated mediator of diabetic complications. Front. Endocrinol. 14, 1050540 (2023).
Thomas, M. C., Coughlan, M. T. & Cooper, M. E. The postprandial actions of GLP-1 receptor agonists: the missing link for cardiovascular and kidney protection in type 2 diabetes. Cell Metab. 35, 253–273 (2023).
Irace, C. et al. Empagliflozin influences blood viscosity and wall shear stress in subjects with type 2 diabetes mellitus compared with incretin-based therapy. Cardiovasc. Diabetol. 17, 52 (2018).
Article PubMed PubMed Central Google Scholar
Li, S. et al. Recent advances of mechanosensitive genes in vascular endothelial cells for the formation and treatment of atherosclerosis. Genes. Dis. 11, 101046 (2024).
Luo, J. Y. et al. Induction of KLF2 by exercise activates eNOS to improve vasodilatation in diabetic mice. Diabetes 72, 1330–1342 (2023).
Haemmig, S. et al. Novel lesional transcriptional signature separates atherosclerosis with and without diabetes in Yorkshire swine and humans. Arterioscler. Thromb. Vasc. Biol. 41, 1487–1503 (2021).
Article PubMed PubMed Central Google Scholar
Gray, S. P. et al. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis. Circulation 127, 1888–1902 (2013).
Jude, E. B., Douglas, J. T., Anderson, S. G., Young, M. J. & Boulton, A. J. Circulating cellular adhesion molecules ICAM-1, VCAM-1, P- and E-selectin in the prediction of cardiovascular disease in diabetes mellitus. Eur. J. Intern. Med. 13, 185–189 (2002).
Gray, S. P. et al. Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 36, 295–307 (2016).
Khan, A. W. et al. The role of activator protein-1 (AP-1) complex in diabetes associated atherosclerosis: insights from single cell RNA sequencing. Diabetes 73, 1495–1512 (2024).
Jiang, Y. Z., Manduchi, E., Jimenez, J. M. & Davies, P. F. Endothelial epigenetics in biomechanical stress: disturbed flow-mediated epigenomic plasticity in vivo and in vitro. Arterioscler. Thromb. Vasc. Biol. 35, 1317–1326 (2015).
Article PubMed PubMed Central Google Scholar
He, L., Zhang, C. L., Chen, Q., Wang, L. & Huang, Y. Endothelial shear stress signal transduction and atherogenesis: from mechanisms to therapeutics. Pharmacol. Ther. 235, 108152 (2022).
Kalluri, A. S. et al. Single-cell analysis of the normal mouse aorta reveals functionally distinct endothelial cell populations. Circulation 140, 147–163 (2019).
Article PubMed PubMed Central Google Scholar
Andueza, A. et al. Endothelial reprogramming by disturbed flow revealed by single-cell RNA and chromatin accessibility study. Cell Rep. 33, 108491 (2020).
Article PubMed PubMed Central Google Scholar
Moonen, J.-R. A. J. et al. Endothelial progenitor cells give rise to pro-angiogenic smooth muscle-like progeny. Cardiovasc. Res. 86, 506–515 (2010).
Kovacic, J. C. et al. Endothelial to mesenchymal transition in cardiovascular disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73, 190–209 (2019).
Article PubMed PubMed Central Google Scholar
Krenning, G., Moonen, J.-R. A. J., van Luyn, M. J. A. & Harmsen, M. C. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices. Biomaterials 29, 3703–3711 (2008).
Chen, P. Y. et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J. Clin. Invest. 125, 4514–4528 (2015).
Article PubMed PubMed Central Google Scholar
Evrard, S. M. et al. Endothelial to mesenchymal transition is common in atherosclerotic lesions and is associated with plaque instability. Nat. Commun. 7, 11853 (2016).
Article PubMed PubMed Central Google Scholar
Cooley, B. C. et al. TGF-β signaling mediates endothelial-to-mesenchymal transition (EndMT) during vein graft remodeling. Sci. Transl. Med. 6, 227ra234 (2014).
Depuydt, M. A. et al. Microanatomy of the human atherosclerotic plaque by single-cell transcriptomics. Circ. Res. 127, 1437–1455 (2020).
Article PubMed PubMed Central Google Scholar
Alsaigh, T., Evans, D., Frankel, D. & Torkamani, A. Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution. Commun. Biol. 5, 1084 (2022).
留言 (0)