Phenotyping atherosclerotic plaque and perivascular adipose tissue: signalling pathways and clinical biomarkers in atherosclerosis

Vaduganathan, M., Mensah, G. A., Turco, J. V., Fuster, V. & Roth, G. A. The global burden of cardiovascular diseases and risk. J. Am. Coll. Cardiol. 80, 2361–2371 (2022).

PubMed  Google Scholar 

Ibanez, B. et al. Progression of early subclinical atherosclerosis (PESA) study. J. Am. Coll. Cardiol. 78, 156–179 (2021).

PubMed  Google Scholar 

Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Prim. 5, 56 (2019).

PubMed  Google Scholar 

Arbab-Zadeh, A., Nakano, M., Virmani, R. & Fuster, V. Acute coronary events. Circulation 125, 1147–1156 (2012).

PubMed  PubMed Central  Google Scholar 

Falk, E., Shah, P. K. & Fuster, V. Coronary plaque disruption. Circulation 92, 657–671 (1995).

PubMed  Google Scholar 

Wang, J. C., Normand, S. L., Mauri, L. & Kuntz, R. E. Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation 110, 278–284 (2004).

PubMed  Google Scholar 

Stone, G. W. et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364, 226–235 (2011).

PubMed  Google Scholar 

Puri, R., Nicholls, S. J., Ellis, S. G., Tuzcu, E. M. & Kapadia, S. R. High-risk coronary atheroma: the interplay between ischemia, plaque burden, and disease progression. J. Am. Coll. Cardiol. 63, 1134–1140 (2014).

PubMed  Google Scholar 

Williams, M. C. et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction: results from the Multicenter SCOT-HEART Trial (Scottish Computed Tomography of the HEART). Circulation 141, 1452–1462 (2020).

PubMed  PubMed Central  Google Scholar 

Narula, J. et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J. Am. Coll. Cardiol. 61, 1041–1051 (2013).

PubMed  PubMed Central  Google Scholar 

Zhang, T. et al. Longitudinal assessment of coronary plaque regression related to sodium-glucose cotransporter-2 inhibitor using coronary computed tomography angiography. Cardiovasc. Diabetol. 23, 267 (2024).

PubMed  PubMed Central  Google Scholar 

Liu, S. et al. Effect of PCSK9 antibodies on coronary plaque regression and stabilization derived from intravascular imaging in patients with coronary artery disease: a meta-analysis. Int. J. Cardiol. 392, 131330 (2023).

PubMed  Google Scholar 

Vaidya, K. et al. Colchicine therapy and plaque stabilization in patients with acute coronary syndrome: a CT coronary angiography study. JACC Cardiovasc. Imaging 11, 305–316 (2018).

PubMed  Google Scholar 

Goeller, M. et al. Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA Cardiol. 3, 858–863 (2018).

PubMed  PubMed Central  Google Scholar 

Kwiecinski, J. et al. Noninvasive coronary atherosclerotic plaque imaging. JACC Cardiovasc. Imaging 16, 1608–1622 (2023).

PubMed  Google Scholar 

Qi, X.-Y. et al. Perivascular adipose tissue (PVAT) in atherosclerosis: a double-edged sword. Cardiovasc. Diabetol. 17, 134 (2018).

PubMed  PubMed Central  Google Scholar 

Tan, N., Dey, D., Marwick, T. H. & Nerlekar, N. Pericoronary adipose tissue as a marker of cardiovascular risk. J. Am. Coll. Cardiol. 81, 913–923 (2023).

PubMed  Google Scholar 

Kotanidis, C. P. & Antoniades, C. Perivascular fat imaging by computed tomography (CT): a virtual guide. Br. J. Pharmacol. 178, 4270–4290 (2021).

PubMed  Google Scholar 

Hillock-Watling, C. & Gotlieb, A. I. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall. Cardiovasc. Pathol. 61, 107459 (2022).

PubMed  Google Scholar 

Oikonomou, E. K. & Antoniades, C. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 16, 83–99 (2019).

PubMed  Google Scholar 

Brown, N. K. et al. Perivascular adipose tissue in vascular function and disease: a review of current research and animal models. Arterioscler. Thromb. Vasc. Biol. 34, 1621–1630 (2014).

PubMed  PubMed Central  Google Scholar 

Koenen, M., Hill, M. A., Cohen, P. & Sowers, J. R. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 128, 951–968 (2021).

PubMed  PubMed Central  Google Scholar 

Frontini, A. & Cinti, S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 11, 253–256 (2010).

PubMed  Google Scholar 

Pérez-Martí, A. et al. A low-protein diet induces body weight loss and browning of subcutaneous white adipose tissue through enhanced expression of hepatic fibroblast growth factor 21 (FGF21). Mol. Nutr. Food Res. 61, 1600725 (2017).

Google Scholar 

Otero-Díaz, B. et al. Exercise induces white adipose tissue browning across the weight spectrum in humans. Front. Physiol. 9, 1781 (2018).

PubMed  PubMed Central  Google Scholar 

Lucchini, F. C. et al. ASK1 inhibits browning of white adipose tissue in obesity. Nat. Commun. 11, 1642 (2020).

PubMed  PubMed Central  Google Scholar 

Kalinovich, A. V., de Jong, J. M., Cannon, B. & Nedergaard, J. UCP1 in adipose tissues: two steps to full browning. Biochimie 134, 127–137 (2017).

PubMed  Google Scholar 

Fischer, C. et al. A miR-327–FGF10–FGFR2-mediated autocrine signaling mechanism controls white fat browning. Nat. Commun. 8, 2079 (2017).

PubMed  PubMed Central  Google Scholar 

Machado, S. A. et al. Browning of the white adipose tissue regulation: new insights into nutritional and metabolic relevance in health and diseases. Nutr. Metab. 19, 61 (2022).

Google Scholar 

Britton, K. A. et al. Prevalence, distribution, and risk factor correlates of high thoracic periaortic fat in the Framingham Heart Study. J. Am. Heart Assoc. 1, e004200 (2012).

PubMed  PubMed Central  Google Scholar 

El Khoudary, S. R. et al. Postmenopausal women with greater paracardial fat have more coronary artery calcification than premenopausal women: the Study of Women’s Health Across the Nation (SWAN) Cardiovascular Fat Ancillary Study. J. Am. Heart Assoc. 6, e004545 (2017).

PubMed  PubMed Central  Google Scholar 

Ahmad, A. A., Randall, M. D. & Roberts, R. E. Sex differences in the role of phospholipase A(2) —dependent arachidonic acid pathway in the perivascular adipose tissue function in pigs. J. Physiol. 595, 6623–6634 (2017).

PubMed  PubMed Central  Google Scholar 

Wang, D. et al. Endothelial dysfunction and enhanced contractility in microvessels from ovariectomized rats. Hypertension 63, 1063–1069 (2014).

PubMed  Google Scholar 

Yuvaraj, J. et al. Pericoronary adipose tissue attenuation on coronary computed tomography angiography associates with male sex and Indigenous Australian status. Sci. Rep. 13, 15509 (2023).

PubMed  PubMed Central  Google Scholar 

van Rosendael, S. E. et al. Vessel and sex differences in pericoronary adipose tissue attenuation obtained with coronary CT in individuals without coronary atherosclerosis. Int. J. Cardiovasc. Imaging 38, 2781–2789 (2022).

PubMed  PubMed Central  Google Scholar 

Kinoshita, D. et al. Sex-specific association between perivascular inflammation and plaque vulnerability. Circ. Cardiovasc. Imaging 17, e016178 (2024).

PubMed  Google Scholar 

Matsuzawa, Y. & Lerman, A. Endothelial dysfunction and coronary artery disease: assessment, prognosis, and treatment. Coron. Artery Dis. 25, 713–724 (2014).

PubMed  PubMed Central  Google Scholar 

Rajendran, P. et al. The vascular endothelium and human diseases. Int. J. Biol. Sci. 9, 1057–1069 (2013).

PubMed  PubMed Central  Google Scholar 

Ross, R. Atherosclerosis — an inflammatory disease. N. Engl. J. Med. 340, 115–126 (1999).

PubMed  Google Scholar 

Cheng, C. K., Bakar, H. A., Gollasch, M. & Huang, Y. Perivascular adipose tissue: the sixth man of the cardiovascular system. Cardiovasc. Drugs Ther. 32, 481–502 (2018).

PubMed  PubMed Central  Google Scholar 

Akoumianakis, I. & Antoniades, C. The interplay between adipose tissue and the cardiovascular system: is fat always bad? Cardiovasc. Res. 113, 999–1008 (2017).

PubMed  Google Scholar 

Akoumianakis, I., Tarun, A. & Antoniades, C. Perivascular adipose tissue as a regulator of vascular disease pathogenesis: identifying novel therapeutic targets. Br. J. Pharmacol. 174, 3411–3424 (2017).

PubMed  Google Scholar 

Antonopoulos, A. S. et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes 64, 2207–2219 (2015).

PubMed  Google Scholar 

Mani, S. et al. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127, 2523–2534 (2013).

留言 (0)

沒有登入
gif