Heusch, G. Myocardial ischemia/reperfusion: translational pathophysiology of ischemic heart disease. Med 5, 10–31 (2024).
Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).
Döring, Y., van der Vorst, E. P. C. & Weber, C. Targeting immune cell recruitment in atherosclerosis. Nat. Rev. Cardiol. 21, 824–840 (2024).
Heusch, G. Alpha-adrenergic mechanisms in myocardial ischemia. Circulation 81, 1–13 (1990).
Heusch, G. et al. α-Adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101, 689–694 (2000).
Heusch, G. Vagal cardioprotection in reperfused acute myocardial infarction. JACC Cardiovasc. Interv. 10, 1521–1522 (2017).
Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152–159 (2022).
Mohanta, S. K. et al. Cardiovascular brain circuits. Circ. Res. 132, 1546–1565 (2023).
Article PubMed PubMed Central Google Scholar
Weber, C., Habenicht, A. J. R. & von Hundelshausen, P. Novel mechanisms and therapeutic targets in atherosclerosis: inflammation and beyond. Eur. Heart J. 44, 2672–2681 (2023).
Carnevale, L. et al. Celiac vagus nerve stimulation recapitulates angiotensin II-induced splenic noradrenergic activation, driving egress of CD8 effector cells. Cell Rep. 33, 108494 (2020).
Article PubMed PubMed Central Google Scholar
Carnevale, D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat. Rev. Cardiol. 19, 379–394 (2022).
Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).
Article PubMed PubMed Central Google Scholar
van der Laan, A. M. et al. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur. Heart J. 35, 376–385 (2014).
Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).
Article PubMed PubMed Central Google Scholar
Rein, H. Über ein Regulationssystem “Milz-Leber” für den oxydativen Stoffwechsel der Körpergewebe und besonders des Herzens. Naturwissenschaften 36, 233–239 (1949).
Rein, H. The role of the spleen and liver in coronary or hypoxic myocardial insufficiency. Pflug. Arch. Gesamt. Physiol. Menschen Tiere 253, 435–458 (1951).
Meesmann, W. & Schmier, J. Effects of electric stimulation of the splenic nerve on coronary blood flow. Pflügers Arch. 263, 293–303 (1956).
Meesmann, W. & Schmier, J. Oxygen consumption of the heart in spleen-liver mechanism. Pflügers Arch. 263, 304–314 (1956).
Lieder, H. R. et al. Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ. Res. 123, 1152–1163 (2018).
Article PubMed PubMed Central Google Scholar
Lieder, H. et al. Vago-splenic signal transduction of cardioprotection in humans. Eur. Heart J. 45, 3164–3177 (2024).
Heusch, G. The spleen in myocardial infarction. Circ. Res. 124, 26–28 (2019).
Cesta, M. F. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 34, 455–465 (2006).
Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).
Steiniger, B. S. Human spleen microanatomy: why mice do not suffice. Immunology 145, 334–346 (2015).
Article PubMed PubMed Central Google Scholar
Alexandre, Y. O. & Mueller, S. N. Splenic stromal niches in homeostasis and immunity. Nat. Rev. Immunol. 23, 705–719 (2023).
Lewis, S. M., Williams, A. & Eisenbarth, S. C. Structure and function of the immune system in the spleen. Sci. Immunol. 4, eaau6085 (2019).
Article PubMed PubMed Central Google Scholar
Crean, P. A. et al. The fractional distribution of the cardiac output in man using microspheres labelled with technetium 99m. Br. J. Radiol. 59, 209–215 (1986).
Steiniger, B. S., Pfeffer, H., Guthe, M. & Lobachev, O. Exploring human splenic red pulp vasculature in virtual reality: details of sheathed capillaries and the open capillary network. Histochem. Cell Biol. 155, 341–354 (2021).
Steiniger, B. S., Pfeffer, H., Gaffling, S. & Lobachev, O. The human splenic microcirculation is entirely open as shown by 3D models in virtual reality. Sci. Rep. 12, 16487 (2022).
Article PubMed PubMed Central Google Scholar
Pereira, M. R. & Leite, P. E. The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. J. Cell Physiol. 231, 1862–1869 (2016).
Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA 105, 11008–11013 (2008).
Article PubMed PubMed Central Google Scholar
Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).
Article PubMed PubMed Central Google Scholar
Ji, H. et al. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol. 7, 335–347 (2014).
Straub, R. H., Lang, B., Falk, W., Scholmerich, J. & Singer, E. A. In vitro superfusion method for the investigation of nerve-immune cell interaction in murine spleen. J. Neuroimmunol. 61, 53–60 (1995).
Mota, C. M. D. & Madden, C. J. Neural control of the spleen as an effector of immune responses to inflammation: mechanisms and treatments. Am. J. Physiol. Regul. Integr. Comp. Physiol. 323, R375–R384 (2022).
Article PubMed PubMed Central Google Scholar
Gonzalez-Gonzalez, M. A., Bendale, G. S., Wang, K., Wallace, G. G. & Romero-Ortega, M. Platinized graphene fiber electrodes uncover direct spleen-vagus communication. Commun. Biol. 4, 1097 (2021).
Article PubMed PubMed Central Google Scholar
Kawashima, K., Fujii, T., Moriwaki, Y., Misawa, H. & Horiguchi, K. Non-neuronal cholinergic system in regulation of immune function with a focus on α7 nAChRs. Int. Immunopharmacol. 29, 127–134 (2015).
留言 (0)