The spleen in ischaemic heart disease

Heusch, G. Myocardial ischemia/reperfusion: translational pathophysiology of ischemic heart disease. Med 5, 10–31 (2024).

Article  PubMed  Google Scholar 

Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

Article  PubMed  Google Scholar 

Döring, Y., van der Vorst, E. P. C. & Weber, C. Targeting immune cell recruitment in atherosclerosis. Nat. Rev. Cardiol. 21, 824–840 (2024).

Article  PubMed  Google Scholar 

Heusch, G. Alpha-adrenergic mechanisms in myocardial ischemia. Circulation 81, 1–13 (1990).

Article  PubMed  Google Scholar 

Heusch, G. et al. α-Adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101, 689–694 (2000).

Article  PubMed  Google Scholar 

Heusch, G. Vagal cardioprotection in reperfused acute myocardial infarction. JACC Cardiovasc. Interv. 10, 1521–1522 (2017).

Article  PubMed  Google Scholar 

Mohanta, S. K. et al. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature 605, 152–159 (2022).

Article  PubMed  Google Scholar 

Mohanta, S. K. et al. Cardiovascular brain circuits. Circ. Res. 132, 1546–1565 (2023).

Article  PubMed  PubMed Central  Google Scholar 

Weber, C., Habenicht, A. J. R. & von Hundelshausen, P. Novel mechanisms and therapeutic targets in atherosclerosis: inflammation and beyond. Eur. Heart J. 44, 2672–2681 (2023).

Article  PubMed  Google Scholar 

Carnevale, L. et al. Celiac vagus nerve stimulation recapitulates angiotensin II-induced splenic noradrenergic activation, driving egress of CD8 effector cells. Cell Rep. 33, 108494 (2020).

Article  PubMed  PubMed Central  Google Scholar 

Carnevale, D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat. Rev. Cardiol. 19, 379–394 (2022).

Article  PubMed  Google Scholar 

Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

Article  PubMed  PubMed Central  Google Scholar 

van der Laan, A. M. et al. Monocyte subset accumulation in the human heart following acute myocardial infarction and the role of the spleen as monocyte reservoir. Eur. Heart J. 35, 376–385 (2014).

Article  PubMed  Google Scholar 

Dutta, P. et al. Myocardial infarction accelerates atherosclerosis. Nature 487, 325–329 (2012).

Article  PubMed  PubMed Central  Google Scholar 

Rein, H. Über ein Regulationssystem “Milz-Leber” für den oxydativen Stoffwechsel der Körpergewebe und besonders des Herzens. Naturwissenschaften 36, 233–239 (1949).

Article  Google Scholar 

Rein, H. The role of the spleen and liver in coronary or hypoxic myocardial insufficiency. Pflug. Arch. Gesamt. Physiol. Menschen Tiere 253, 435–458 (1951).

Article  Google Scholar 

Meesmann, W. & Schmier, J. Effects of electric stimulation of the splenic nerve on coronary blood flow. Pflügers Arch. 263, 293–303 (1956).

Article  Google Scholar 

Meesmann, W. & Schmier, J. Oxygen consumption of the heart in spleen-liver mechanism. Pflügers Arch. 263, 304–314 (1956).

Article  Google Scholar 

Lieder, H. R. et al. Vago-splenic axis in signal transduction of remote ischemic preconditioning in pigs and rats. Circ. Res. 123, 1152–1163 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Lieder, H. et al. Vago-splenic signal transduction of cardioprotection in humans. Eur. Heart J. 45, 3164–3177 (2024).

Article  PubMed  Google Scholar 

Heusch, G. The spleen in myocardial infarction. Circ. Res. 124, 26–28 (2019).

Article  PubMed  Google Scholar 

Cesta, M. F. Normal structure, function, and histology of the spleen. Toxicol. Pathol. 34, 455–465 (2006).

Article  PubMed  Google Scholar 

Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nat. Rev. Immunol. 5, 606–616 (2005).

Article  PubMed  Google Scholar 

Steiniger, B. S. Human spleen microanatomy: why mice do not suffice. Immunology 145, 334–346 (2015).

Article  PubMed  PubMed Central  Google Scholar 

Alexandre, Y. O. & Mueller, S. N. Splenic stromal niches in homeostasis and immunity. Nat. Rev. Immunol. 23, 705–719 (2023).

Article  PubMed  Google Scholar 

Lewis, S. M., Williams, A. & Eisenbarth, S. C. Structure and function of the immune system in the spleen. Sci. Immunol. 4, eaau6085 (2019).

Article  PubMed  PubMed Central  Google Scholar 

Crean, P. A. et al. The fractional distribution of the cardiac output in man using microspheres labelled with technetium 99m. Br. J. Radiol. 59, 209–215 (1986).

Article  PubMed  Google Scholar 

Steiniger, B. S., Pfeffer, H., Guthe, M. & Lobachev, O. Exploring human splenic red pulp vasculature in virtual reality: details of sheathed capillaries and the open capillary network. Histochem. Cell Biol. 155, 341–354 (2021).

Article  PubMed  Google Scholar 

Steiniger, B. S., Pfeffer, H., Gaffling, S. & Lobachev, O. The human splenic microcirculation is entirely open as shown by 3D models in virtual reality. Sci. Rep. 12, 16487 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Pereira, M. R. & Leite, P. E. The involvement of parasympathetic and sympathetic nerve in the inflammatory reflex. J. Cell Physiol. 231, 1862–1869 (2016).

Article  PubMed  Google Scholar 

Rosas-Ballina, M. et al. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc. Natl Acad. Sci. USA 105, 11008–11013 (2008).

Article  PubMed  PubMed Central  Google Scholar 

Rosas-Ballina, M. et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 334, 98–101 (2011).

Article  PubMed  PubMed Central  Google Scholar 

Ji, H. et al. Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol. 7, 335–347 (2014).

Article  PubMed  Google Scholar 

Straub, R. H., Lang, B., Falk, W., Scholmerich, J. & Singer, E. A. In vitro superfusion method for the investigation of nerve-immune cell interaction in murine spleen. J. Neuroimmunol. 61, 53–60 (1995).

Article  PubMed  Google Scholar 

Mota, C. M. D. & Madden, C. J. Neural control of the spleen as an effector of immune responses to inflammation: mechanisms and treatments. Am. J. Physiol. Regul. Integr. Comp. Physiol. 323, R375–R384 (2022).

Article  PubMed  PubMed Central  Google Scholar 

Gonzalez-Gonzalez, M. A., Bendale, G. S., Wang, K., Wallace, G. G. & Romero-Ortega, M. Platinized graphene fiber electrodes uncover direct spleen-vagus communication. Commun. Biol. 4, 1097 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Kawashima, K., Fujii, T., Moriwaki, Y., Misawa, H. & Horiguchi, K. Non-neuronal cholinergic system in regulation of immune function with a focus on α7 nAChRs. Int. Immunopharmacol. 29, 127–134 (2015).

Article 

留言 (0)

沒有登入
gif