SP1 activates AKT3 to facilitate the development of diabetic nephropathy

Feldman EL, Callaghan BC, Pop-Busui R, Zochodne DW, Wright DE, Bennett DL et al (2019) Diabetic neuropathy. Nat Rev Dis Primers 5:42

Article  PubMed  PubMed Central  Google Scholar 

Sagoo MK, Gnudi L (2020) Diabetic Nephropathy: an overview. Methods Mol Biol 2067:3–7

Article  CAS  PubMed  Google Scholar 

Flyvbjerg A (2017) The role of the complement system in diabetic nephropathy. Nat Rev Nephrol 13:311–318

Article  CAS  PubMed  Google Scholar 

Meza Letelier CE, San Martin Ojeda CA, Ruiz Provoste JJ, Frugone Zaror CJ (2017) [Pathophysiology of diabetic nephropathy: a literature review]. Medwave 17:e6839

Article  PubMed  Google Scholar 

Fineberg D, Jandeleit-Dahm KA, Cooper ME (2013) Diabetic nephropathy: diagnosis and treatment. Nat Rev Endocrinol 9:713–723

Article  CAS  PubMed  Google Scholar 

Luis-Rodriguez D, Martinez-Castelao A, Gorriz JL, De-Alvaro F, Navarro-Gonzalez JF (2012) Pathophysiological role and therapeutic implications of inflammation in diabetic nephropathy. World J Diabetes 3:7–18

Article  PubMed  PubMed Central  Google Scholar 

Holdt LM, Stahringer A, Sass K, Pichler G, Kulak NA, Wilfert W et al (2016) Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun 7:12429

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meng XM, Nikolic-Paterson DJ, Lan HY (2016) TGF-beta: the master regulator of fibrosis. Nat Rev Nephrol 12:325–338

Article  CAS  PubMed  Google Scholar 

Kurihara H, Sakai T (2017) Cell biology of mesangial cells: the third cell that maintains the glomerular capillary. Anat Sci Int 92:173–186

Article  CAS  PubMed  Google Scholar 

Chen C, Gong W, Li C, Xiong F, Wang S, Huang J et al (2017) Sphingosine kinase 1 mediates AGEs-induced fibronectin upregulation in diabetic nephropathy. Oncotarget 8:78660–78676

Article  PubMed  PubMed Central  Google Scholar 

Tang G, Du Y, Guan H, Jia J, Zhu N, Shi Y et al (2022) Butyrate ameliorates skeletal muscle atrophy in diabetic nephropathy by enhancing gut barrier function and FFA2-mediated PI3K/Akt/mTOR signals. Br J Pharmacol 179:159–178

Article  CAS  PubMed  Google Scholar 

Tan H, Chen J, Li Y, Li Y, Zhong Y, Li G et al (2022) Glabridin, a bioactive component of licorice, ameliorates diabetic nephropathy by regulating ferroptosis and the VEGF/Akt/ERK pathways. Mol Med 28:58

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang WJ, Jiang X, Gao CC, Chen ZW (2022) Salusin-alpha mitigates diabetic nephropathy via inhibition of the Akt/mTORC1/p70S6K signaling pathway in diabetic rats. Drug Chem Toxicol 45:283–290

Article  CAS  PubMed  Google Scholar 

Li H, Zheng J, Wu Y, Zhou H, Zeng S, Li Q (2023) Dendrobium officinale polysaccharide decreases podocyte injury in diabetic nephropathy by regulating IRS-1/AKT signal and promoting mitophagy. Aging 15:10291–10306

Article  PubMed  PubMed Central  Google Scholar 

El-Said YAM, Sallam NAA, Ain-Shoka AA, Abdel-Latif HA (2020) Geraniol ameliorates diabetic nephropathy via interference with miRNA-21/PTEN/Akt/mTORC1 pathway in rats. Naunyn Schmiedebergs Arch Pharmacol 393:2325–2337

Article  CAS  PubMed  Google Scholar 

Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang Q, Cang Z, Shen L, Peng W, Xi L, Jiang X et al (2021) circ_0037128/miR-17-3p/AKT3 axis promotes the development of diabetic nephropathy. Gene 765:145076

Article  CAS  PubMed  Google Scholar 

Narayan S, Wilson SH (2000) Kinetic analysis of Sp1-mediated transcriptional activation of the human DNA polymerase beta promoter. Oncogene 19:4729–4735

Article  CAS  PubMed  Google Scholar 

Valdez L, Giorello F, Feijoo M, Opazo JC, Lessa EP, Naya DE et al (2015) Characterization of the kidney transcriptome of the long-haired mouse Abrothrix hirta (Rodentia, Sigmodontinae) and comparison with that of the olive mouse A. olivacea. PLoS ONE 10:e0121148

Article  PubMed  PubMed Central  Google Scholar 

Shimada J, Suzuki Y, Kim SJ, Wang PC, Matsumura M, Kojima S (2001) Transactivation via RAR/RXR-Sp1 interaction: characterization of binding between Sp1 and GC box motif. Mol Endocrinol 15:1677–1692

Article  CAS  PubMed  Google Scholar 

Wei L, Gou X, Su B, Han H, Guo T, Liu L et al (2022) Mahuang Decoction attenuates Airway inflammation and remodeling in Asthma via suppression of the SP1/FGFR3/PI3K/AKT Axis. Drug Des Devel Ther 16:2833–2850

Article  PubMed  PubMed Central  Google Scholar 

Yu Y, Cao F, Xiong Y, Zhou H (2021) SP1 transcriptionally activates NLRP6 inflammasome and induces immune evasion and radioresistance in glioma cells. Int Immunopharmacol 98:107858

Article  CAS  PubMed  Google Scholar 

Lu J, Lee W, Jiang C, Keller EB (1994) Start site selection by Sp1 in the TATA-less human Ha-ras promoter. J Biol Chem 269:5391–5402

Article  CAS  PubMed  Google Scholar 

Yang H, Wang J, Zhang Z, Peng R, Lv D, Liu H et al (2021) Sp1-Induced lncRNA Rmrp promotes Mesangial Cell Proliferation and Fibrosis in Diabetic Nephropathy by modulating the miR-1a-3p/JunD pathway. Front Endocrinol (Lausanne) 12:690784

Article  PubMed  Google Scholar 

Yi R, Yang S, Lin X, Zhong L, Liao Y, Hu Z et al (2020) miR-5188 augments glioma growth, migration and invasion through an SP1-modulated FOXO1-PI3K/AKT-c-JUN-positive feedback circuit. J Cell Mol Med 24:11800–11813

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ding X, Jing N, Shen A, Guo F, Song Y, Pan M et al (2021) MiR-21-5p in macrophage-derived extracellular vesicles affects podocyte pyroptosis in diabetic nephropathy by regulating A20. J Endocrinol Invest 44:1175–1184

Article  CAS  PubMed  Google Scholar 

Zheng C, Huang L, Luo W, Yu W, Hu X, Guan X et al (2019) Inhibition of STAT3 in tubular epithelial cells prevents kidney fibrosis and nephropathy in STZ-induced diabetic mice. Cell Death Dis 10:848

Article  PubMed  PubMed Central  Google Scholar 

Beck KF, Pfeilschifter J (2021) Gasotransmitter synthesis and signalling in the renal glomerulus. Implications for glomerular diseases. Cell Signal 77:109823

Article  CAS  PubMed  Google Scholar 

Zhang P, Sun Y, Peng R, Chen W, Fu X, Zhang L et al (2019) Long non-coding RNA Rpph1 promotes inflammation and proliferation of mesangial cells in diabetic nephropathy via an interaction with Gal-3. Cell Death Dis 10:526

Article  PubMed  PubMed Central  Google Scholar 

Hu W, Han Q, Zhao L, Wang L (2019) Circular RNA circRNA_15698 aggravates the extracellular matrix of diabetic nephropathy mesangial cells via miR-185/TGF-beta1. J Cell Physiol 234:1469–1476

Article  CAS  PubMed  Google Scholar 

Cheng Y, Zhang X, Ma F, Sun W, Wang W, Yu J et al (2020) The role of Akt2 in the Protective Effect of Fenofibrate against Diabetic Nephropathy. Int J Biol Sci 16:553–567

Article 

留言 (0)

沒有登入
gif