Yazdi M, Beaulieu L. Artifacts in Spiral X-ray CT Scanners : Problems and Solutions. World Acad Sci Eng Technol. 2007;11:96–100.
Kroft LJM, De Roos A, Geleijns J. Artifacts in ECG-synchronized MDCT coronary angiography. Am J Roentgenol. 2007;189:581–91. https://doi.org/10.2214/AJR.07.2138.
Hsieh J. Computed tomography Principles, Design, Artifacts, and Recent Advances. SPIE. 2009. pp. 207–209.
Kalender WA, Hebel R, Ebersberger J. Reduction of CT artifacts caused by metallic implants. Radiology. 1987;164:576–7. https://doi.org/10.1148/radiology.164.2.3602406.
Article CAS PubMed Google Scholar
Hsieh J. Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise. Med Phys. 1998;25:2139–47. https://doi.org/10.1118/1.598410.
Article CAS PubMed Google Scholar
Cheng PM, Romero M, Duddalwar VA. Pulmonary pseudoemboli: a new artifact arising from a commercial metal artifact reduction algorithm for computed tomographic image reconstruction. J Comput Assist Tomogr. 2014;38:159–62. https://doi.org/10.1097/RCT.0b013e3182aac5de.
Article CAS PubMed Google Scholar
Wayer DR, Kim NY, Otto BJ, Grayev AM, Kuner AD. Unintended Consequences: Review of New Artifacts Introduced by Iterative Reconstruction CT Metal Artifact Reduction in Spine Imaging. Am J Neuroradiol. 2019;1–4. https://doi.org/10.3174/ajnr.A6238
Katsura M, Sato J, Akahane M, Kunimatsu A, Abe O. Current and novel techniques for metal artifact reduction at CT: Practical guide for radiologists. Radiographics. 2018;38:450–61. https://doi.org/10.1148/rg.2018170102.
Vaishnav JY, Ghammraoui B, Leifer M, Zeng R, Jiang L, Myers KJ. CT metal artifact reduction algorithms: Toward a framework for objective performance assessment. Med Phys. 2020;47:3344–55. https://doi.org/10.1002/mp.14231.
Article CAS PubMed Google Scholar
Wang Z, Bovik AC, Sheikh HR. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans IMAGE Process. 2004;13. https://doi.org/10.1109/TIP.2003.819861
Lee YH, Park KK, Song HT, Kim S, Suh JS. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software. Eur Radiol. 2012;22:1331–40. https://doi.org/10.1007/s00330-011-2370-5.
Van Der Schaaf IC, Van Leeuwen M, Vlassenbroek A, Velthuis B. Minimizing clip artifacts in multi CT angiography of clipped patients. Am J Neuroradiol. 2006;27:60–6. PMCID: PMC7976073
Chindasombatjaroen J, Kakimoto N, Murakami S, Maeda Y, Furukawa S. Quantitative analysis of metallic artifacts caused by dental metals: Comparison of cone-beam and multi-detector row CT scanners. Oral Radiol. 2011;27:114–20. https://doi.org/10.1007/s11282-011-0071-z.
Lin XZ, Miao F, Li JY, Dong HP, Shen Y, Chen KM. High-definition CT Gemstone spectral imaging of the brain: initial results of selecting optimal monochromatic image for beam-hardening artifacts and image noise reduction. J Comput Assist Tomogr. 2011;35:294–7. https://doi.org/10.1097/RCT.0b013e3182058d5c.
Wang Y, Qian B, Li B, Qin G, Zhou Z, Qiu Y, et al. Metal artifacts reduction using monochromatic images from spectral CT: Evaluation of pedicle screws in patients with scoliosis. Eur J Radiol. 2013;82:e360–6. https://doi.org/10.1016/j.ejrad.2013.02.024.
Sun X, Zhao Q, Sun P, Yao Z, Wang R. Metal artifact reduction using mono-energy images combined with metal artifact reduction software in spectral computed tomography: A study on phantoms. Quant Imaging Med Surg. 2020;10:1515–25.
Article PubMed PubMed Central Google Scholar
Hu Y, Pan S, Zhao X, Guo W, He M, Guo Q. Value and clinical application of orthopedic metal artifact reduction algorithm in CT scans after orthopedic metal implantation. Korean J Radiol. 2017;18:526–35. https://doi.org/10.3348/kjr.2017.18.3.526.
Article PubMed PubMed Central Google Scholar
Nagayama Y, Tanoue S, Oda S, Sakabe D, Emoto T, Kidoh M, et al. Metal artifact reduction in head CT performed for patients with deep brain stimulation devices: Effectiveness of a single-energy metal artifact reduction algorithm. Am J Neuroradiol. 2020;41:231–7. https://doi.org/10.3174/ajnr.A6375.
Article CAS PubMed PubMed Central Google Scholar
Kawashima H, Ichikawa K, Takata T, Mitsui W. Algorithm-based artifact reduction in patients with arms-down positioning in computed tomography. Phys Medica. 2020;69:61–9. https://doi.org/10.1016/j.ejmp.2019.11.019.
Kidoh M, Oda S, Nakato K, Sakabe D, Kanazawa H, Takashio S, et al. Assessment of cardiac implantable electric device lead perforation using a metal artifact reduction algorithm in cardiac computed tomography. Eur J Radiol. 2021;136: 109530. https://doi.org/10.1016/j.ejrad.2021.109530.
De Crop A, Casselman J, Van Hoof T, Dierens M, Vereecke E, Bossu N, et al. Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: does it make a difference? Neuroradiology. 2015;57:841–9. https://doi.org/10.1007/s00234-015-1537-1.
Tsuboi K, Fukunaga M. The Effect of Metal Artifact Reduction at Different Calibrated and Display Field of Views in Computed Tomography (in Japanese). Nihon Hoshasen Gijutsu Gakkai Zasshi. 2016;72:1237–44. https://doi.org/10.6009/jjrt.2016_JSRT_72.12.1237.
Won Kim C, Kim JH. Realistic simulation of reduced-dose CT with noise modeling and sinogram synthesis using DICOM CT images. Med Phys. 2014;41:1–16. https://doi.org/10.1118/1.4830431.
Yang K, Ruan C, Li X, Liu B. Data of CT bow tie filter profiles from three modern CT scanners. Data Br. 2019;25:104261.
Mori I, Machida Y. Deriving the modulation transfer function of CT from extremely noisy edge profiles. Radiol Phys Technol. 2009;2:22–32. https://doi.org/10.1007/s12194-008-0039-9.
Goto M, Tominaga C, Taura M, Azumi H, Sato K, Homma N, et al. A method to measure slice sensitivity profiles of CT images under low-contrast and high-noise conditions. Phys Medica. 2019;60:100–10. https://doi.org/10.1016/j.ejmp.2019.03.010.
Urikura A, Ichikawa K, Hara T, Nishimaru E, Nakaya Y. Spatial resolution measurement for iterative reconstruction by use of image-averaging techniques in computed tomography. Radiol Phys Technol. 2014;7:358–66. https://doi.org/10.1007/s12194-014-0273-2.
Boedeker KL, Cooper VN, McNitt-Gray MF. Application of the noise power spectrum in modern diagnostic MDCT: Part I. Measurement of noise power spectra and noise equivalent quanta. Phys Med Biol. 2007;52:4027–46.
Article CAS PubMed Google Scholar
Inkinen SI, Mäkelä T, Kaasalainen T, Peltonen J, Kangasniemi M, Kortesniemi M. Automatic head computed tomography image noise quantification with deep learning. Physica Med. 2022;99:102–12. https://doi.org/10.1016/j.ejmp.2022.05.011.
Huber NR, Kim J, Leng S, McCollough CH, Yu L. Deep learning-based image noise quantification framework for computed tomography. J Comput Assist Tomogr. 2023;47:603–7. https://doi.org/10.1097/rct.0000000000001469.
Article PubMed PubMed Central Google Scholar
Ketola JHJ, Inkinen SI, Mäkelä T, Kaasalainen T, Peltonen JI, Kangasniemi M, et al. Automatic chest computed tomography image noise quantification using deep learning. Physica Med. 2024;117: 103186. https://doi.org/10.1016/j.ejmp.2023.103186.
Takada K, Ichikawa K, Banno S, Otobe K. Suggestion of the Relative Artifact Index for Noise-independent Evaluation of the Streak Artifact (in Japanese). Nihon Hoshasen Gijutsu Gakkai Zasshi. 2018;74:315–25. https://doi.org/10.6009/jjrt.2018_JSRT_74.4.315.
Niwa S, Ichikawa K, Kawashima H, Takata T, Minami S, Mitsui W. Reduction of streak artifacts caused by low photon counts utilizing an image-based forward projection in computed tomography. Comput Biol Med. 2021;135:1–29. https://doi.org/10.1016/j.compbiomed.2021.104583.
留言 (0)