Computerized classification method for significant coronary artery stenosis on whole-heart coronary MRA using 3D convolutional neural networks with attention mechanisms

World Health Organization. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 3 Apr 2024

Nazir MS, Bustin A, Hajhosseiny R, et al. High-resolution non-contrast free-breathing coronary cardiovascular magnetic resonance angiography for detection of coronary artery disease: validation against invasive coronary angiography. J Cardiovasc Magn Reson. 2022;24:26. https://doi.org/10.1186/s12968-022-00858-0.

Article  PubMed  PubMed Central  Google Scholar 

Hajhosseiny R, Rashid I, Bustin A, et al. Clinical comparison of sub-mm high-resolution non-contrast coronary CMR angiography against coronary CT angiography in patients with low-intermediate risk of coronary artery disease: a single center trial. J Cardiovasc Magn Reson. 2021;23:57. https://doi.org/10.1186/s12968-021-00758-9.

Article  PubMed  PubMed Central  Google Scholar 

Hajhosseiny R, Bustin A, Munoz C, et al. Coronary magnetic resonance angiography: technical innovations leading us to the promised land? JACC Cardiovasc Imaging. 2020;13:2653–72. https://doi.org/10.1016/j.jcmg.2020.01.006.

Article  PubMed  Google Scholar 

Kato S, Azuma M, Nakayama N, et al. Diagnostic accuracy of whole heart coronary magnetic resonance angiography: a systematic review and meta-analysis. J Cardiovasc Magn Reson. 2023;25:36. https://doi.org/10.1186/s12968-023-00949-6.

Article  PubMed  PubMed Central  Google Scholar 

Di Leo G, Fisci E, Secchi F, et al. Diagnostic accuracy of magnetic resonance angiography for detection of coronary artery disease: a systematic review and meta-analysis. Eur Radiol. 2016;26:3706–18. https://doi.org/10.1007/s00330-015-4134-0.

Article  PubMed  Google Scholar 

Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. https://doi.org/10.1016/j.media.2017.07.005.

Article  PubMed  Google Scholar 

Piccialli F, Di Somma V, Giampaolo F, Cuomo S, Fortino G. A survey on deep learning in medicine: why, how and when? Inf Fusion. 2021;66:111–37. https://doi.org/10.1016/j.inffus.2020.09.006.

Article  Google Scholar 

Wu X, Tang L, Li W, et al. Feasibility of accelerated non-contrast-enhanced whole-heart bSSFP coronary MR angiography by deep learning-constrained compressed sensing. Eur Radiol. 2023;33:8180–90. https://doi.org/10.1007/s00330-023-09740-8.

Article  CAS  PubMed  Google Scholar 

Wu X, Deng L, Li W, et al. Deep learning-based acceleration of compressed sensing for noncontrast-enhanced coronary magnetic resonance angiography in patients with suspected coronary artery disease. J Magn Reson Imaging. 2023;58:1521–30. https://doi.org/10.1002/jmri.28653.

Article  PubMed  Google Scholar 

Küstner T, Munoz C, Psenicny A, et al. Deep-learning based super-resolution for 3D isotropic coronary MR angiography in less than a minute. Magn Reson Med. 2021;86:2837–52. https://doi.org/10.1002/mrm.28911.

Article  PubMed  Google Scholar 

Kobayashi H, Nakayama R, Hizukuri A, Ishida M, Kitagawa K, Sakuma H. Improving image resolution of whole-heart coronary MRA using convolutional neural network. J Digit Imaging. 2020;33:497–503. https://doi.org/10.1007/s10278-019-00264-6.

Article  PubMed  Google Scholar 

Kariyasu T, Machida H, Takahashi S, Fukushima K, Yoshioka T, Yokoyama K. Denoising using deep-learning-based reconstruction for whole-heart coronary MRA with sub-millimeter isotropic resolution at 3 T: a volunteer study. Diagn Interv Radiol. 2022;28:470–7. https://doi.org/10.5152/dir.2022.21291.

Article  PubMed  PubMed Central  Google Scholar 

Qi H, Hajhosseiny R, Cruz G, et al. End-to-end deep learning nonrigid motion-corrected reconstruction for highly accelerated free-breathing coronary MRA. Magn Reson Med. 2021;86:1983–96. https://doi.org/10.1002/mrm.28851.

Article  PubMed  Google Scholar 

Malavé MO, Baron CA, Koundinyan SP, et al. Reconstruction of undersampled 3D non-Cartesian image-based navigators for coronary MRA using an unrolled deep learning model. Magn Reson Med. 2020;84:800–12. https://doi.org/10.1002/mrm.28177.

Article  PubMed  PubMed Central  Google Scholar 

Xu J, Ren H, Cai S, Zhang X. An improved faster r-CNN algorithm for assisted detection of lung nodules. Comput Biol Med. 2023;153: 106470. https://doi.org/10.1016/j.compbiomed.2022.106470.

Article  PubMed  Google Scholar 

Prinzi F, Insalaco M, Orlando A, Gaglio S, Vitabile S. A yolo-based model for breast cancer detection in mammograms. Cogn Comput. 2024;16:107–20. https://doi.org/10.1007/s12559-023-10189-6.

Article  Google Scholar 

Abdusalomov AB, Mukhiddinov M, Whangbo TK. Brain tumor detection based on deep learning approaches and magnetic resonance imaging. Cancers. 2023;15:4172. https://doi.org/10.3390/cancers15164172.

Article  PubMed  PubMed Central  Google Scholar 

Guo MH, Xu TX, Liu ZN, et al. Attention mechanisms in computer vision: a survey. Comput Visual Media. 2022;8:331–68. https://doi.org/10.1007/s41095-022-0271-y.

Article  Google Scholar 

Brauwers G, Frasincar G. A general survey on attention mechanisms in deep learning. IEEE Trans Knowl Data Eng. 2023;35:3279–98. https://doi.org/10.1109/TKDE.2021.3126456.

Article  Google Scholar 

Leipsic J, Abbara S, Achenbach S, et al. SCCT guidelines for the interpretation and reporting of coronary CT angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr. 2014;8:342–58. https://doi.org/10.1016/j.jcct.2014.07.003.

Article  PubMed  Google Scholar 

Sutskever I, Martens J, Dahl G, Hinton G. On the importance of initialization and momentum in deep learning; 28. Proceeding of the 30th International Conference on Machine Learning (PMLR); 2013;1139–47

Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceeding of the 14th International Joint Conference on Artificial Intelligence; 1995;1137–43

Fluss R, Faraggi D, Reiser B. Estimation of the Youden index and its associated cutoff point. Biom J. 2005;47:458–72. https://doi.org/10.1002/bimj.200410135.

Article  PubMed  Google Scholar 

Demler OV, Pencina MJ, D’Agostino RB Sr. Misuse of DeLong test to compare AUCs for nested models. Stat Med. 2012;31:2577–87. https://doi.org/10.1002/sim.5328.

Article  PubMed  PubMed Central  Google Scholar 

Dunnett CW, Tamhane AC. A step-up multiple test procedure. J Am Stat Assoc. 1992;87:162–70. https://doi.org/10.1080/01621459.1992.10475188.

Article  Google Scholar 

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision; 2017; https://doi.org/10.1007/s11263-019-01228-7

留言 (0)

沒有登入
gif