Miller DL. Make radiation protection a habit. Tech Vasc Interv Radiol. 2018;21(1):37–42. https://doi.org/10.1053/j.tvir.2017.12.008.
ICRP. Radiological protection in fluoroscopically guided procedures outside the imaging department. Ann ICRP. 2010. https://doi.org/10.1016/j.icrp.2012.03.001.
Abdelrahman M, Lombardo P, Camp A, et al. A parametric study of occupational radiation dose in interventional radiology by Monte-Carlo simulations. Phys Med. 2020;78:58–70. https://doi.org/10.1016/j.ejmp.2020.08.016.
Miller DL. Overview of contemporary interventional fluoroscopy procedures. Health Phys. 2008;95(5):638–44. https://doi.org/10.1097/01.HP.0000326341.86359.0b.
Article CAS PubMed Google Scholar
Vano E, Gonzalez L, Fernández JM, Haskal ZJ. Eye lens exposure to radiation in interventional suites: caution is warranted. Radiology. 2008;248(3):945–53. https://doi.org/10.1148/radiol.2482071800.
Hirata Y, Fujibuchi T, Fujita K, et al. Angular dependence of shielding effect of radiation protective eyewear for radiation protection of crystalline lens. Radiol Phys Technol. 2019;12(4):401–8. https://doi.org/10.1007/s12194-019-00538-2.
Kim KP, Miller DL, Balter S, et al. Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys. 2008;94(3):211–27. https://doi.org/10.1097/01.HP.0000290614.76386.35.
Article CAS PubMed Google Scholar
Haga Y, Chida K, Kimura Y, et al. Radiation eye dose to medical staff during respiratory endoscopy under X-ray fluoroscopy. J Radiat Res. 2020;61(5):691–6. https://doi.org/10.1093/jrr/rraa034.
Article CAS PubMed PubMed Central Google Scholar
Busoni S, Bruzzi M, Giomi S, et al. Surgeon eye lens dose monitoring in interventional neuroradiology, cardiovascular, and radiology procedures. Phys Med. 2022;104:123–8. https://doi.org/10.1016/j.ejmp.2022.11.002.
Article CAS PubMed Google Scholar
Morcillo AB, Alejo L, Huerga C, et al. Occupational doses to the eye lens in pediatric and adult noncardiac interventional radiology procedures. Med Phys. 2021;48(4):1956–66. https://doi.org/10.1002/mp.14753.
Article CAS PubMed Google Scholar
Hizukuri K, Fujibuchi T, Arakawa H. Directional vector visualization of scattered rays in mobile C-arm fluoroscopy. Radiol Phys Technol. 2024;17(1):288–96. https://doi.org/10.1007/s12194-024-00779-w.
Yanagawa A, Takata T, Onimaru T, et al. New perforated radiation shield for anesthesiologists: Monte Carlo simulation of effects. J Radiat Res. 2023;64(2):379–86. https://doi.org/10.1093/jrr/rrac106.
Article PubMed PubMed Central Google Scholar
Eder H, Seidenbusch MC, Treitl M, Gilligan P. A new design of a lead-acrylic shield for staff dose reduction in radial and femoral access coronary catheterization. Rofo. 2015;187(10):915–23. https://doi.org/10.1055/s-0034-1399688.
Article CAS PubMed Google Scholar
Nishi K, Fujibuchi T, Yoshinaga T. Development and evaluation of the effectiveness of educational material for radiological protection that uses augmented reality and virtual reality to visualize the behavior of scattered radiation. J Radiol Prot. 2022. https://doi.org/10.1088/1361-6498/ac3e0a.
Nishi K, Fujibuchi T, Yoshinaga T. Development of an application to visualise the spread of scattered radiation in radiography using augmented reality. J Radiol Prot. 2020. https://doi.org/10.1088/1361-6498/abc14b.
Fujibuchi T. Radiation protection education using virtual reality by visualization of scatter distribution in radiological examination. J Radiol Prot. 2021. https://doi.org/10.1088/1361-6498/ac16b1.
Sato N, Fujibuchi T, Toyoda T, et al. Consideration of the protection curtain’s shielding ability after identifying the source of scattered radiation in the angiography. Radiat Prot Dosim. 2017;175(2):238–45. https://doi.org/10.1093/rpd/ncw291.
Takata T, Kondo H, Yamamoto M, et al. Immersive radiation experience for interventional radiology with virtual reality radiation dose visualization using fast Monte Carlo dose estimation. Interv Radiol (Higashimatsuyama). 2020;5(2):58–66. https://doi.org/10.22575/interventionalradiology.2019-0007.
Article PubMed PubMed Central Google Scholar
Takata T, Kotoku J, Maejima H, et al. Fast skin dose estimation system for interventional radiology. J Radiat Res. 2018;59(2):233–9. https://doi.org/10.1093/jrr/rrx062.
Alnewaini Z, Langer E, Schaber P, et al. Real-time, ray casting-based scatter dose estimation for C-arm X-ray system. J Appl Clin Med Phys. 2017;18(2):144–53. https://doi.org/10.1002/acm2.12036.
Article PubMed PubMed Central Google Scholar
Balcaza VG, Bosman DF, Badal A, et al. PyMCGPU-IR monte carlo code test for occupational dosimetry. Radiat Prot Dosimetry. 2023;199(8–9):730–5. https://doi.org/10.1093/rpd/ncad072.
Balcaza VG, Camp A, Sánchez RM, Ginjaume M, Duch MA. Dose assesment with fast monte carlo codes in interventional radiology. Radiat Prot Dosimetry. 2023;199(15–16):1813–7. https://doi.org/10.1093/rpd/ncac244.
Article CAS PubMed Google Scholar
Sato T, Iwamoto Y, Hashimoto S, et al. Recent improvements of the particle and heavy ion transport code system—PHITS version 3.33. J Nucl Sci Technol. 2024;61:127–35.
Kato H. X-ray, electron beam, beta-ray spectrum, Laboratory of Radiological Technology, https://hidekikato1952.wixsite.com/radiotechnology/soft-2. Accessed 3 Jun 2024.
ICRP. Conversion coefficients for use in radiological protection against external radiation. Ann ICRP. 1996. https://doi.org/10.1016/S0146-6453(96)90003-2.
Paraview. https://www.paraview.org/. Accessed 3 Jun 2024.
Montaño Moreno JJ, Palmer Pol A, Sesé Abad A, Cajal BB. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema. 2013;25(4):500–6. https://doi.org/10.7334/psicothema2013.23.
留言 (0)