Directional vector-based quick evaluation method for protective plate effects in X-ray fluoroscopy (DQPEX)

Miller DL. Make radiation protection a habit. Tech Vasc Interv Radiol. 2018;21(1):37–42. https://doi.org/10.1053/j.tvir.2017.12.008.

Article  PubMed  Google Scholar 

ICRP. Radiological protection in fluoroscopically guided procedures outside the imaging department. Ann ICRP. 2010. https://doi.org/10.1016/j.icrp.2012.03.001.

Article  Google Scholar 

Abdelrahman M, Lombardo P, Camp A, et al. A parametric study of occupational radiation dose in interventional radiology by Monte-Carlo simulations. Phys Med. 2020;78:58–70. https://doi.org/10.1016/j.ejmp.2020.08.016.

Article  PubMed  Google Scholar 

Miller DL. Overview of contemporary interventional fluoroscopy procedures. Health Phys. 2008;95(5):638–44. https://doi.org/10.1097/01.HP.0000326341.86359.0b.

Article  CAS  PubMed  Google Scholar 

Vano E, Gonzalez L, Fernández JM, Haskal ZJ. Eye lens exposure to radiation in interventional suites: caution is warranted. Radiology. 2008;248(3):945–53. https://doi.org/10.1148/radiol.2482071800.

Article  PubMed  Google Scholar 

Hirata Y, Fujibuchi T, Fujita K, et al. Angular dependence of shielding effect of radiation protective eyewear for radiation protection of crystalline lens. Radiol Phys Technol. 2019;12(4):401–8. https://doi.org/10.1007/s12194-019-00538-2.

Article  PubMed  Google Scholar 

Kim KP, Miller DL, Balter S, et al. Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys. 2008;94(3):211–27. https://doi.org/10.1097/01.HP.0000290614.76386.35.

Article  CAS  PubMed  Google Scholar 

Haga Y, Chida K, Kimura Y, et al. Radiation eye dose to medical staff during respiratory endoscopy under X-ray fluoroscopy. J Radiat Res. 2020;61(5):691–6. https://doi.org/10.1093/jrr/rraa034.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Busoni S, Bruzzi M, Giomi S, et al. Surgeon eye lens dose monitoring in interventional neuroradiology, cardiovascular, and radiology procedures. Phys Med. 2022;104:123–8. https://doi.org/10.1016/j.ejmp.2022.11.002.

Article  CAS  PubMed  Google Scholar 

Morcillo AB, Alejo L, Huerga C, et al. Occupational doses to the eye lens in pediatric and adult noncardiac interventional radiology procedures. Med Phys. 2021;48(4):1956–66. https://doi.org/10.1002/mp.14753.

Article  CAS  PubMed  Google Scholar 

Hizukuri K, Fujibuchi T, Arakawa H. Directional vector visualization of scattered rays in mobile C-arm fluoroscopy. Radiol Phys Technol. 2024;17(1):288–96. https://doi.org/10.1007/s12194-024-00779-w.

Article  PubMed  Google Scholar 

Yanagawa A, Takata T, Onimaru T, et al. New perforated radiation shield for anesthesiologists: Monte Carlo simulation of effects. J Radiat Res. 2023;64(2):379–86. https://doi.org/10.1093/jrr/rrac106.

Article  PubMed  PubMed Central  Google Scholar 

Eder H, Seidenbusch MC, Treitl M, Gilligan P. A new design of a lead-acrylic shield for staff dose reduction in radial and femoral access coronary catheterization. Rofo. 2015;187(10):915–23. https://doi.org/10.1055/s-0034-1399688.

Article  CAS  PubMed  Google Scholar 

Nishi K, Fujibuchi T, Yoshinaga T. Development and evaluation of the effectiveness of educational material for radiological protection that uses augmented reality and virtual reality to visualize the behavior of scattered radiation. J Radiol Prot. 2022. https://doi.org/10.1088/1361-6498/ac3e0a.

Article  PubMed  Google Scholar 

Nishi K, Fujibuchi T, Yoshinaga T. Development of an application to visualise the spread of scattered radiation in radiography using augmented reality. J Radiol Prot. 2020. https://doi.org/10.1088/1361-6498/abc14b.

Article  PubMed  Google Scholar 

Fujibuchi T. Radiation protection education using virtual reality by visualization of scatter distribution in radiological examination. J Radiol Prot. 2021. https://doi.org/10.1088/1361-6498/ac16b1.

Article  PubMed  Google Scholar 

Sato N, Fujibuchi T, Toyoda T, et al. Consideration of the protection curtain’s shielding ability after identifying the source of scattered radiation in the angiography. Radiat Prot Dosim. 2017;175(2):238–45. https://doi.org/10.1093/rpd/ncw291.

Article  CAS  Google Scholar 

Takata T, Kondo H, Yamamoto M, et al. Immersive radiation experience for interventional radiology with virtual reality radiation dose visualization using fast Monte Carlo dose estimation. Interv Radiol (Higashimatsuyama). 2020;5(2):58–66. https://doi.org/10.22575/interventionalradiology.2019-0007.

Article  PubMed  PubMed Central  Google Scholar 

Takata T, Kotoku J, Maejima H, et al. Fast skin dose estimation system for interventional radiology. J Radiat Res. 2018;59(2):233–9. https://doi.org/10.1093/jrr/rrx062.

Article  PubMed  Google Scholar 

Alnewaini Z, Langer E, Schaber P, et al. Real-time, ray casting-based scatter dose estimation for C-arm X-ray system. J Appl Clin Med Phys. 2017;18(2):144–53. https://doi.org/10.1002/acm2.12036.

Article  PubMed  PubMed Central  Google Scholar 

Balcaza VG, Bosman DF, Badal A, et al. PyMCGPU-IR monte carlo code test for occupational dosimetry. Radiat Prot Dosimetry. 2023;199(8–9):730–5. https://doi.org/10.1093/rpd/ncad072.

Article  PubMed  Google Scholar 

Balcaza VG, Camp A, Sánchez RM, Ginjaume M, Duch MA. Dose assesment with fast monte carlo codes in interventional radiology. Radiat Prot Dosimetry. 2023;199(15–16):1813–7. https://doi.org/10.1093/rpd/ncac244.

Article  CAS  PubMed  Google Scholar 

Sato T, Iwamoto Y, Hashimoto S, et al. Recent improvements of the particle and heavy ion transport code system—PHITS version 3.33. J Nucl Sci Technol. 2024;61:127–35.

Article  CAS  Google Scholar 

Kato H. X-ray, electron beam, beta-ray spectrum, Laboratory of Radiological Technology, https://hidekikato1952.wixsite.com/radiotechnology/soft-2. Accessed 3 Jun 2024.

ICRP. Conversion coefficients for use in radiological protection against external radiation. Ann ICRP. 1996. https://doi.org/10.1016/S0146-6453(96)90003-2.

Article  Google Scholar 

Paraview. https://www.paraview.org/. Accessed 3 Jun 2024.

Montaño Moreno JJ, Palmer Pol A, Sesé Abad A, Cajal BB. Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema. 2013;25(4):500–6. https://doi.org/10.7334/psicothema2013.23.

Article  PubMed  Google Scholar 

留言 (0)

沒有登入
gif