Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, Wong TY (2014) Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Global Health 2(2):e106–e116. https://doi.org/10.1016/S2214-109X(13)70145-1
Mullins RF, Russell SR, Anderson DH, Hageman GS (2000) Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease. FASEB J 14(7):835–846. https://doi.org/10.1096/fasebj.14.7.835
Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci U S A 99(23):14682–14687. https://doi.org/10.1073/pnas.222551899
Article PubMed PubMed Central Google Scholar
Johnson PT, Lewis GP, Talaga KC, Brown MN, Kappel PJ, Fisher SK, Anderson DH, Johnson LV (2003) Drusen-associated degeneration in the retina. Invest Ophthalmol Vis Sci 44(10):4481–4488. https://doi.org/10.1167/iovs.03-0436
Penn JS, Madan A, Caldwell RB, Bartoli M, Caldwell RW, Hartnett ME (2008) Vascular endothelial growth factor in eye disease. Prog Retinal Eye Res 27(4):331–371. https://doi.org/10.1016/j.preteyeres.2008.05.001
Yannuzzi LA, Negrão S, Iida T, Carvalho C, Rodriguez-Coleman H, Slakter J, Freund KB, Sorenson J, Orlock D, Borodoker N (2001) Retinal angiomatous proliferation in age-related macular degeneration. Retina 21(5):416–434
Qiang W, Wei R, Chen Y, Chen D (2021) Clinical pathological features and current animal models of type 3 macular neovascularization. Front Neurosci 15:734860
Article PubMed PubMed Central Google Scholar
Matsubara H, Nagashima R, Chujo S, Matsui Y, Kato K, Kuze M, Kondo M (2023) Subclinical ocular changes after intravitreal injections of different anti-VEGF agents for neovascular age-related macular degeneration. J Clin Med 12(23):7401. https://doi.org/10.3390/jcm12237401
Article PubMed PubMed Central Google Scholar
Jacobs B, Palmer N, Shetty T, Dimaras H, Hajrasouliha A, Jusufbegovic D, Corson TW (2021) Patient preferences in retinal drug delivery. Sci Rep 11(1):18996. https://doi.org/10.1038/s41598-021-98568-7
Article PubMed PubMed Central Google Scholar
Heisel C, Yousif J, Mijiti M, Charizanis K, Brigell M, Corson TW, Kelley MR (2021) APE1/Ref-1 as a novel target for retinal diseases. J Cell Signal 2(2):133–138. https://doi.org/10.33696/Signaling.2.044
Article PubMed PubMed Central Google Scholar
Mijit M, Caston R, Gampala S, Fishel ML, Fehrenbacher J, Kelley MR (2021) APE1/Ref-1-one target with multiple indications: emerging aspects and new directions. J Cell Signal 2(3):151–161
PubMed PubMed Central Google Scholar
Muniyandi A, Hartman GD, Song Y, Mijit M, Kelley MR, Corson TW (2023) Beyond VEGF: targeting inflammation and other pathways for treatment of retinal disease. J Pharmacol Exp Ther 386(1):15–25. https://doi.org/10.1124/jpet.122.001563
Article PubMed PubMed Central Google Scholar
Hartman GD, Lambert-Cheatham NA, Kelley MR, Corson TW (2021) Inhibition of APE1/Ref-1 for neovascular eye diseases: from biology to therapy. Int J Mol Sci 22(19):10279. https://doi.org/10.3390/ijms221910279
Article PubMed PubMed Central Google Scholar
Luo M, Delaplane S, Jiang A, Reed A, He Y, Fishel M, Nyland RL, Borch RF, Qiao X, Georgiadis MM, Kelley MR (2008) Role of the multifunctional DNA repair and redox signaling protein Ape1/Ref-1 in cancer and endothelial cells: small-molecule inhibition of the redox function of Ape1. Antioxidants Redox Signal 10(11):1853–1867. https://doi.org/10.1089/ars.2008.2120
Fishel ML, Colvin ES, Luo M, Kelley MR, Robertson KA (2010) Inhibition of the redox function of APE1/Ref-1 in myeloid leukemia cell lines results in a hypersensitive response to retinoic acid-induced differentiation and apoptosis. Exp Hematol 38(12):1178–1188. https://doi.org/10.1016/j.exphem.2010.08.011
Article PubMed PubMed Central Google Scholar
Fishel ML, Jiang Y, Rajeshkumar NV, Scandura G, Sinn AL, He Y, Shen C, Jones DR, Pollok KE, Ivan M, Maitra A, Kelley MR (2011) Impact of APE1/Ref-1 redox inhibition on pancreatic tumor growth. Mol Cancer Ther 10(9):1698–1708. https://doi.org/10.1158/1535-7163.MCT-11-0107
Article PubMed PubMed Central Google Scholar
Jedinak A, Dudhgaonkar S, Kelley MR, Sliva D (2011) Apurinic/apyrimidinic endonuclease 1 regulates inflammatory response in macrophages. Anticancer Res 31(2):379–385
PubMed PubMed Central Google Scholar
Su D, Delaplane S, Luo M, Rempel DL, Vu B, Kelley MR, Gross ML, Georgiadis MM (2011) Interactions of apurinic/apyrimidinic endonuclease with a redox inhibitor: evidence for an alternate conformation of the enzyme. Biochemistry 50(1):82–92. https://doi.org/10.1021/bi101248s
Cardoso AA, Jiang Y, Luo M, Reed AM, Shahda S, He Y, Maitra A, Kelley MR, Fishel ML (2012) APE1/Ref-1 regulates STAT3 transcriptional activity and APE1/Ref-1–STAT3 dual-targeting effectively inhibits pancreatic cancer cell survival. PLoS ONE 7(10):e47462. https://doi.org/10.1371/journal.pone.0047462
Article PubMed PubMed Central Google Scholar
Zhang J, Luo M, Marasco D, Logsdon D, LaFavers KA, Chen Q, Reed A, Kelley MR, Gross ML, Georgiadis MM (2013) Inhibition of apurinic/apyrimidinic endonuclease I’s redox activity revisited. Biochemistry 52(17):2955–2966. https://doi.org/10.1021/bi400179m
Shah F, Logsdon D, Messmann RA, Fehrenbacher JC, Fishel ML, Kelley MR (2017) Exploiting the Ref-1-APE1 node in cancer signaling and other diseases: from bench to clinic. npj Precision Oncol 1(1):19. https://doi.org/10.1038/s41698-017-0023-0
Sardar Pasha SPB, Sishtla K, Sulaiman RS, Park B, Shetty T, Shah F, Fishel ML, Wikel JH, Kelley MR, Corson TW (2018) Ref-1/APE1 inhibition with novel small molecules blocks ocular neovascularization. J Pharmacol Exp Ther 367(1):108–118. https://doi.org/10.1124/jpet.118.248088
Article PubMed PubMed Central Google Scholar
Jiang A, Gao H, Kelley MR, Qiao X (2011) Inhibition of APE1/Ref-1 redox activity with APX3330 blocks retinal angiogenesis in vitro and in vivo. Vision Res 51(1):93–100. https://doi.org/10.1016/j.visres.2010.10.008
Kelley MR, Shahda S, Lakhani NJ, O’Neil B, Chu L, Anderson AK, Wan J, Mosley AL, Liu H, Messmann RA (2019) Abstract PR01: a phase I study targeting the APE1/Ref-1 DNA repair-redox signaling protein with the APX3330 inhibitor. Mol Cancer Ther 18(12_Supplement):PR01. https://doi.org/10.1158/1535-7163.Targ-19-pr01
Boyer DS, Brigell M, Kolli A, Rahmani K, Lazar A, Sooch M, Patel R, Lazar E, Pepose JS, Kelley MR (2022) The safety of APX3330, an oral drug candidate for the treatment of diabetic eye disease, in the ongoing masked 24-week ZETA-1 Phase 2 clinical trial. Invest Ophthalmol Vis Sci 63(7): E-abstract 675
Corson TW (2023) APX3330 for the treatment of diabetic retinopathy. touchRev Ophthalmol 17(1):2–3. https://doi.org/10.17925/USOR.2023.17.1.2
Gampala S, Moon HR, Wireman R, Peil J, Kiran S, Mitchell DK, Brewster K, Mang H, Masters A, Bach C, Smith-Kinnamen W, Doud EH, Rai R, Mosley AL, Quinney SK, Clapp DW, Hamdouchi C, Wikel J, Zhang C, Han B, Georgiadis MM, Kelley MR, Fishel ML (2024) New Ref-1/APE1 targeted inhibitors demonstrating improved potency for clinical applications in multiple cancer types. Pharmacol Res 201:107092. https://doi.org/10.1016/j.phrs.2024.107092
Article PubMed PubMed Central Google Scholar
Muniyandi A, Martin M, Sishtla K, Motolani A, Sun M, Jensen NR, Qi X, Boulton ME, Prabhu L, Lu T, Corson TW (2023) PRMT5 is a therapeutic target in choroidal neovascularization. Sci Rep 13(1):1747. https://doi.org/10.1038/s41598-023-28215-w
Article PubMed PubMed Central Google Scholar
Shihan MH, Novo SG, Le Marchand SJ, Wang Y, Duncan MK (2021) A simple method for quantitating confocal fluorescent images. Biochem Biophys Rep 25:100916. https://doi.org/10.1016/j.bbrep.2021.100916
Article PubMed PubMed Central Google Scholar
Jansson M, Li Y-C, Jendeberg L, Anderson S, Montelione GT, Nilsson B (1996) High-level production of uniformly 15N-and 13C-enriched fusion proteins in Escherichia coli. J Biomol NMR 7(2):131–141. https://doi.org/10.1007/BF00203823
留言 (0)