Camelo C, Luschnig S (2021) Cells into tubes: molecular and physical principles underlying lumen formation in tubular organs. Curr Top Dev Biol 143:37–74. https://doi.org/10.1016/bs.ctdb.2020.09.002
Article PubMed CAS Google Scholar
Queisser A, Seront E, Boon LM, Vikkula M (2021) Genetic basis and therapies for vascular anomalies. Circ Res 129:155–173. https://doi.org/10.1161/CIRCRESAHA.121.318145
Article PubMed CAS Google Scholar
Langille BL (1996) Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol 74:834–841
Article PubMed CAS Google Scholar
Tuttle JL, Nachreiner RD, Bhuller AS, Condict KW, Connors BA, Herring BP, Dalsing MC, Unthank JL (2001) Shear level influences resistance artery remodeling: wall dimensions, cell density, and eNOS expression. Am J Physiol Heart Circulat Physiol 281:H1380–1389
Baeyens N, Larrivee B, Ola R, Hayward-Piatkowskyi B, Dubrac A, Huang B, Ross TD, Coon BG, Min E, Tsarfati M, Tong H, Eichmann A, Schwartz MA (2016) Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J Cell Biol 214:807–816. https://doi.org/10.1083/jcb.201603106
Article PubMed PubMed Central CAS Google Scholar
Rodbard S (1975) Vascular caliber. Cardiology 60:4–49
Article PubMed CAS Google Scholar
Pries AR, Hopfner M, le Noble F, Dewhirst MW, Secomb TW (2010) The shunt problem: control of functional shunting in normal and tumour vasculature. Nat Rev Cancer 10:587–593. https://doi.org/10.1038/nrc2895
Article PubMed PubMed Central CAS Google Scholar
Siekmann AF (2023) Biology of vascular mural cells. Development 150. https://doi.org/10.1242/dev.200271.
Ando K, Ishii T, Fukuhara S (2021) Zebrafish vascular mural cell biology: recent advances, development, and functions. Life (Basel) 11. https://doi.org/10.3390/life11101041.
Tsuji-Tamura K, Ogawa M (2018) Morphology regulation in vascular endothelial cells. Inflamm Regen 38:25. https://doi.org/10.1186/s41232-018-0083-8
Article PubMed PubMed Central CAS Google Scholar
Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L, Sun Y, Raschperger E, Rasanen M, Zarb Y, Mochizuki N, Keller A, Lendahl U, Betsholtz C (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480. https://doi.org/10.1038/nature25739
Article PubMed CAS Google Scholar
Campinho P, Vilfan A, Vermot J (2020) Blood flow forces in shaping the vascular system: a focus on endothelial cell behavior. Front Physiol 11:552. https://doi.org/10.3389/fphys.2020.00552
Article PubMed PubMed Central Google Scholar
Gifre-Renom L, Jones EAV (2021) Vessel enlargement in development and pathophysiology. Front Physiol 12:639645. https://doi.org/10.3389/fphys.2021.639645
Article PubMed PubMed Central Google Scholar
Gallione CJ, Richards JA, Letteboer TG, Rushlow D, Prigoda NL, Leedom TP, Ganguly A, Castells A, Ploos van Amstel JK, Westermann CJ, Pyeritz RE, Marchuk DA (2006) SMAD4 mutations found in unselected HHT patients. J Med Genet 43:793–797. https://doi.org/10.1136/jmg.2006.041517
Article PubMed PubMed Central CAS Google Scholar
Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, Stenzel TT, Speer M, Pericak-Vance MA, Diamond A, Guttmacher AE, Jackson CE, Attisano L, Kucherlapati R, Porteous ME, Marchuk DA (1996) Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet 13:189–195. https://doi.org/10.1038/ng0696-189
Article PubMed CAS Google Scholar
Mahmoud M, Allinson KR, Zhai Z, Oakenfull R, Ghandi P, Adams RH, Fruttiger M, Arthur HM (2010) Pathogenesis of arteriovenous malformations in the absence of endoglin. Circ Res 106:1425–1433. https://doi.org/10.1161/CIRCRESAHA.109.211037
Article PubMed CAS Google Scholar
McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, Helmbold EA, Markel DS, McKinnon WC, Murrell J et al (1994) Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet 8:345–351. https://doi.org/10.1038/ng1294-345
Article PubMed CAS Google Scholar
Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW, Oh SH, Walter G, Raizada MK, Sorg BS, Oh SP (2009) Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest 119:3487–3496. https://doi.org/10.1172/JCI39482
Article PubMed PubMed Central CAS Google Scholar
Roman BL, Pham VN, Lawson ND, Kulik M, Childs S, Lekven AC, Garrity DM, Moon RT, Fishman MC, Lechleider RJ, Weinstein BM (2002) Disruption of acvrl1 increases endothelial cell number in zebrafish cranial vessels. Development 129:3009–3019
Article PubMed CAS Google Scholar
Sugden WW, Meissner R, Aegerter-Wilmsen T, Tsaryk R, Leonard EV, Bussmann J, Hamm MJ, Herzog W, Jin Y, Jakobsson L, Denz C, Siekmann AF (2017) Endoglin controls blood vessel diameter through endothelial cell shape changes in response to haemodynamic cues. Nat Cell Biol 19:653–665. https://doi.org/10.1038/ncb3528
Article PubMed PubMed Central CAS Google Scholar
Banerjee K, Lin Y, Gahn J, Cordero J, Gupta P, Mohamed I, Graupera M, Dobreva G, Schwartz MA, Ola R (2023) SMAD4 maintains the fluid shear stress set point to protect against arterial-venous malformations. J Clin Invest, 133. https://doi.org/10.1172/JCI168352.
Genet G, Genet N, Paila U, Cain SR, Cwiek A, Chavkin NW, Serbulea V, Figueras A, Cerda P, McDonnell SP, Sankaranarayanan D, Huba M, Nelson EA, Riera-Mestre A, Hirschi KK (2024) Induced endothelial cell cycle arrest prevents arteriovenous malformations in hereditary hemorrhagic telangiectasia. Circulation 149:944–962. https://doi.org/10.1161/CIRCULATIONAHA.122.062952
Article PubMed CAS Google Scholar
Dinakaran S, Zhao H, Tang Y, Wang Z, Ruiz S, Nomura-Kitabayashi A, Blanc L, Faughnan ME, Marambaud P (2023) CDK6-mediated endothelial cell cycle acceleration drives arteriovenous malformations in hereditary hemorrhagic telangiectasia. bioRxiv. https://doi.org/10.1101/2023.09.15.554413.
Jin Y, Muhl L, Burmakin M, Wang Y, Duchez AC, Betsholtz C, Arthur HM, Jakobsson L (2017) Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling. Nat Cell Biol 19:639–652. https://doi.org/10.1038/ncb3534
Article PubMed PubMed Central CAS Google Scholar
Tual-Chalot S, Mahmoud M, Allinson KR, Redgrave RE, Zhai Z, Oh SP, Fruttiger M, Arthur HM (2014) Endothelial depletion of Acvrl1 in mice leads to arteriovenous malformations associated with reduced endoglin expression. PLoS ONE 9:e98646. https://doi.org/10.1371/journal.pone.0098646
Article PubMed PubMed Central CAS Google Scholar
Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26:328–331. https://doi.org/10.1038/81634
Article PubMed CAS Google Scholar
Poduri A, Chang AH, Raftrey B, Rhee S, Van M, Red-Horse K (2017) Endothelial cells respond to the direction of mechanical stimuli through SMAD signaling to regulate coronary artery size. Development 144:3241–3252. https://doi.org/10.1242/dev.150904
Article PubMed PubMed Central CAS Google Scholar
Lee HW, Xu Y, He L, Choi W, Gonzalez D, Jin SW, Simons M (2021) Role of venous endothelial cells in developmental and pathologic angiogenesis. Circulation 144:1308–1322. https://doi.org/10.1161/CIRCULATIONAHA.121.054071
Article PubMed PubMed Central CAS Google Scholar
Park H, Furtado J, Poulet M, Chung M, Yun S, Lee S, Sessa WC, Franco CA, Schwartz MA, Eichmann A (2021) Defective flow-migration coupling causes arteriovenous malformations in hereditary hemorrhagic telangiectasia. Circulation 144:805–822. https://doi.org/10.1161/CIRCULATIONAHA.120.053047
留言 (0)