Steijvers E, Ghei A, Xia Z, Zx Zx, Es, et al (2022) Manufacturing artificial bone allografts: a perspective. Biomater Transl 3:65–80
PubMed PubMed Central Google Scholar
Habibovic P, de Groot K (2007) Osteoinductive biomaterials–properties and relevance in bone repair. J Tissue Eng Regen Med 1:25–32
Article CAS PubMed Google Scholar
Wang YF, Wang CY, Wan P, Wang SG, Wang XM (2016) Comparison of bone regeneration in alveolar bone of dogs on mineralized collagen grafts with two composition ratios of nano-hydroxyapatite and collagen. Regen Biomater 3:33–40
Rujitanapanich S, Kumpapan P, Wanjanoi P (2014) Synthesis of hydroxyapatite from oyster shell via precipitation. Energy Procedia 56:112–117
Mondal S, Pal U, Dey A (2016) Natural origin hydroxyapatite scaffold as potential bone tissue engineering substitute. Ceram Int 42:18338–18346
Shi P, Liu M, Fan F, Yu C, Lu W, Du M (2018) Characterization of natural hydroxyapatite originated from fish bone and its biocompatibility with osteoblasts. Mater Sci Eng C Mater Biol Appl 90:706–712
Article CAS PubMed Google Scholar
Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36(Suppl 3):S20–S27
Panwar P, Lamour G, Mackenzie NC, Yang H, Ko F, Li H et al (2015) Changes in structural-mechanical properties and degradability of collagen during aging-associated modifications. J Biol Chem 290:23291–23306
Article CAS PubMed PubMed Central Google Scholar
Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D et al (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26:311–318
Article CAS PubMed Google Scholar
Ding M, Koroma KE, Sorensen JR, Sandri M, Tampieri A, Jespersen SM et al (2019) Collagen-hydroxyapatite composite substitute and bone marrow nuclear cells on posterolateral spine fusion in sheep. J Biomater Appl 34:365–374
Article CAS PubMed Google Scholar
Bharathi R, Ganesh SS, Harini G, Vatsala K, Anushikaa R, Aravind S et al (2022) Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int J Biol Macromol 222:132–153
Article CAS PubMed Google Scholar
Khoshakhlagh PRS, Kiaee G, Heidari P, Miri A, Moradi R et al (2017) Development and characterization of a bioglass/chitosan composite as an injectable bone substitute. Carbohyd Polym 157:1261–1271
Kong LGY, Lu G, Gong Y, Zhao N, Zhang X (2006) A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur Polymer J 42:3171–3179
Ding M, Henriksen SS, Martinetti R, Overgaard S (2017) 3D perfusion bioreactor-activated porous granules on implant fixation and early bone formation in sheep. J Biomed Mater Res B Appl Biomater 105:2465–2476
Article CAS PubMed Google Scholar
Ding M, Andreasen CM, Dencker ML, Jensen AE, Theilgaard N, Overgaard S (2015) Efficacy of a small cell-binding peptide coated hydroxyapatite substitute on bone formation and implant fixation in sheep. J Biomed Mater Res A 103:1357–1365
Nielsen MS, Mikkelsen MD, Ptak SH, Hejbol EK, Ohmes J, Thi TN et al (2021) Efficacy of marine bioactive compound fucoidan for bone regeneration and implant fixation in sheep. J Biomed Mater Res. https://doi.org/10.1002/jbm.a.37334
Ding M (2010) Microarchitectural adaptations in aging and osteoarthrotic subchondral bone issues. Acta Orthop Suppl 81:1–53
Babiker H, Ding M, Sandri M, Tampieri A, Overgaard S (2012) The effects of bone marrow aspirate, bone graft, and collagen composites on fixation of titanium implants. J Biomed Mater Res B Appl Biomater 100:759–766
Dreyer CH, Rasmussen M, Pedersen RH, Overgaard S, Ding M (2020) Comparisons of efficacy between autograft and allograft on defect repair in vivo in normal and osteoporotic rats. Biomed Res Int 2020:9358989
Article PubMed PubMed Central Google Scholar
Mills LA, Simpson AH (2012) In vivo models of bone repair. J Bone Joint Surg Br 94:865–874
Article CAS PubMed Google Scholar
Schell H, Thompson MS, Bail HJ, Hoffmann JE, Schill A, Duda GN et al (2008) Mechanical induction of critically delayed bone healing in sheep: radiological and biomechanical results. J Biomech 41:3066–3072
Henriksen SS, Ding M, Vinther JM, Theilgaard N, Overgaard S (2011) Mechanical strength of ceramic scaffolds reinforced with biopolymers is comparable to that of human bone. J Mater Sci Mater Med. https://doi.org/10.1007/s10856-011-4290-y
Wu SHH, Hsu S, Tseng C, Ho W (2017) Preparation and characterization of hydroxyapatite synthesized from oyster shell powders. Adv Powder Technol 28:1154–1158
Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sprio S (2008) Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J Mater Sci Mater Med 19:239–247
Article CAS PubMed Google Scholar
Wang YJ, Lin FH, Sun JS, Huang YC, Chueh SC, Hsu FY (2003) Collagen-hydroxyapatite microspheres as carriers for bone morphogenic protein-4. Artif Organs 27:162–168
Article CAS PubMed Google Scholar
Cunniffe GM, Curtin CM, Thompson EM, Dickson GR, O’Brien FJ (2016) Content-dependent osteogenic response of nanohydroxyapatite: an in vitro and in vivo assessment within collagen-based scaffolds. ACS Appl Mater Interfaces 8:23477–23488
Article CAS PubMed Google Scholar
Chatterjee S (2014) Artefacts in histopathology. J Oral Maxillofac Pathol 18:S111–S116
Article PubMed PubMed Central Google Scholar
Chesnutt BM, Yuan Y, Buddington K, Haggard WO, Bumgardner JD (2009) Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 15:2571–2579
留言 (0)