Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G et al (2019) FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis 14(1):58. https://doi.org/10.1186/s13023-019-1014-8
Article PubMed PubMed Central Google Scholar
Herrou J, Picaud AS, Lassalle L, Pacot L, Chaussain C, Merzoug V et al (2022) Prevalence of enthesopathies in adults with X-linked hypophosphatemia: analysis of risk factors. J Clin Endocrinol Metab 107(1):e224–e235. https://doi.org/10.1210/clinem/dgab580
Steele A, Gonzalez R, Garbalosa JC, Steigbigel K, Grgurich T, Parisi EJ et al (2020) Osteoarthritis, osteophytes, and enthesophytes affect biomechanical function in adults with X-linked hypophosphatemia. J Clin Endocrinol Metab 105(4):e1798–e1814. https://doi.org/10.1210/clinem/dgaa064
Article PubMed PubMed Central Google Scholar
Che H, Roux C, Etcheto A, Rothenbuhler A, Kamenicky P, Linglart A, Briot K (2016) Impaired quality of life in adults with X-linked hypophosphatemia and skeletal symptoms. Eur J Endocrinol 174(3):325–333. https://doi.org/10.1530/EJE-15-0661
Article CAS PubMed Google Scholar
Connor J, Olear EA, Insogna KL, Katz L, Baker S, Kaur R et al (2015) Conventional therapy in adults with X-linked hypophosphatemia: effects on enthesopathy and dental disease. J Clin Endocrinol Metab 100(10):3625–3632. https://doi.org/10.1210/JC.2015-2199
Article CAS PubMed PubMed Central Google Scholar
Imel EA (2020) Enthesopathy, osteoarthritis, and mobility in X-linked hypophosphatemia1. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgaa242
Article PubMed PubMed Central Google Scholar
Hardy DC, Murphy WA, Siegel BA, Reid IR, Whyte MP (1989) X-linked hypophosphatemia in adults: prevalence of skeletal radiographic and scintigraphic features. Radiology 171(2):403–414. https://doi.org/10.1148/radiology.171.2.2539609
Article CAS PubMed Google Scholar
Mindler GT, Kranzl A, Stauffer A, Kocijan R, Ganger R, Radler C et al (2021) Lower limb deformity and gait deviations among adolescents and adults With X-linked hypophosphatemia. Front Endocrinol (Lausanne) 12:754084. https://doi.org/10.3389/fendo.2021.754084
Bakewell C, Aydin SZ, Ranganath VK, Eder L, Kaeley GS (2020) Imaging techniques: options for the diagnosis and monitoring of treatment of enthesitis in psoriatic arthritis. J Rheumatol 47(7):973–982. https://doi.org/10.3899/jrheum.190512
Freire V, Moser TP, Lepage-Saucier M (2018) Radiological identification and analysis of soft tissue musculoskeletal calcifications. Insights Imaging 9(4):477–492. https://doi.org/10.1007/s13244-018-0619-0
Article PubMed PubMed Central Google Scholar
Kato H, Koga M, Kinoshita Y, Taniguchi Y, Kobayashi H, Fukumoto S et al (2021) Incidence of complications in 25 adult patients with X-linked hypophosphatemia. J Clin Endocrinol Metab 106(9):e3682–e3692. https://doi.org/10.1210/clinem/dgab282
Benjamin M, Milz S, Bydder GM (2008) Magnetic resonance imaging of enthuses. Part 1. Clin Radiol 63(6):691–703. https://doi.org/10.1016/j.crad.2007.12.011
Article CAS PubMed Google Scholar
Di Matteo A, Cipolletta E, Destro Castaniti GM, Smerilli G, Airoldi C, Aydin SZ et al (2022) Reliability assessment of the definition of ultrasound enthesitis in SpA: results of a large, multicentre, international, web-based study. Rheumatology (Oxford) 61(12):4863–4874. https://doi.org/10.1093/rheumatology/keac162
Araz M, Aras G, Kucuk ON (2015) The role of 18F-NaF PET/CT in metastatic bone disease. J Bone Oncol 4(3):92–97. https://doi.org/10.1016/j.jbo.2015.08.002
Article PubMed PubMed Central Google Scholar
Beheshti M (2018) (18)F-Sodium fluoride PET/CT and PET/MR imaging of bone and joint disorders. PET Clin 13(4):477–490. https://doi.org/10.1016/j.cpet.2018.05.004
de Castro LF, Michel Z, Pan K, Taylor J, Szymczuk V, Paravastu S et al (2023) Safety and efficacy of denosumab for fibrous dysplasia of bone. N Engl J Med 388(8):766–768. https://doi.org/10.1056/NEJMc2214862
Article PubMed PubMed Central Google Scholar
Papadakis GZ, Manikis GC, Karantanas AH, Florenzano P, Bagci U, Marias K et al (2019) (18) F-NaF PET/CT imaging in fibrous dysplasia of bone. J Bone Miner Res 34(9):1619–1631. https://doi.org/10.1002/jbmr.3738
Article CAS PubMed Google Scholar
Park PSU, Raynor WY, Sun Y, Werner TJ, Rajapakse CS, Alavi A (2021) (18)F-sodium fluoride PET as a diagnostic modality for metabolic, autoimmune, and osteogenic bone disorders: cellular mechanisms and clinical applications. Int J Mol Sci. https://doi.org/10.3390/ijms22126504
Article PubMed PubMed Central Google Scholar
Sheppard AJ, Paravastu SS, Wojnowski NM, Osamor CC 3rd, Farhadi F, Collins MT, Saboury B (2023) Emerging role of (18)F-NaF PET/computed tomographic imaging in osteoporosis: a potential upgrade to the osteoporosis toolbox. PET Clin 18(1):1–20. https://doi.org/10.1016/j.cpet.2022.09.001
Article PubMed PubMed Central Google Scholar
Botman E, Raijmakers P, Yaqub M, Teunissen B, Netelenbos C, Lubbers W et al (2019) Evolution of heterotopic bone in fibrodysplasia ossificans progressiva: an [(18)F]NaF PET/CT study. Bone 124:1–6. https://doi.org/10.1016/j.bone.2019.03.009
Article CAS PubMed Google Scholar
Cucchi F, Simonsen L, Abild-Nielsen AG, Broholm R (2017) 18F-sodium fluoride PET/CT in Paget disease. Clin Nucl Med 42(7):553–554. https://doi.org/10.1097/RLU.0000000000001687
de Jongh J, Hemke R, Zwezerijnen GJC, Yaqub M, van der Horst-Bruinsma IE, van de Sande MGH et al (2023) (18)F-sodium fluoride PET-CT visualizes both axial and peripheral new bone formation in psoriatic arthritis patients. Eur J Nucl Med Mol Imaging 50(3):756–764. https://doi.org/10.1007/s00259-022-06035-w
Article CAS PubMed Google Scholar
Sheppard AJ, Paravastu SS, Farhadi F, Donnelly E, Hartley IR, Gafni RI et al (2024) Structural and molecular imaging-based characterization of soft tissue and vascular calcification in hyperphosphatemic familial tumoral calcinosis. J Bone Miner Res. https://doi.org/10.1093/jbmr/zjae115
Sheppard AJ, Theng EH, Paravastu SS, Wojnowski NM, Farhadi F, Morris MA et al (2024) Spatial atlas for mapping vascular microcalcification using 18F-NaF PET/CT: application in hyperphosphatemic familial tumoral calcinosis. Arterioscler Thromb Vasc Biol 44(6):1432–1446. https://doi.org/10.1161/ATVBAHA.123.320455
Article CAS PubMed Google Scholar
Son SM, Kim K, Pak K, Kim SJ, Goh TS, Lee JS (2020) Evaluation of the diagnostic performance of (18)F-NaF positron emission tomography/computed tomography in patients with suspected ankylosing spondylitis according to the assessment of SpondyloArthritis international society criteria. Spine J 20(9):1471–1479. https://doi.org/10.1016/j.spinee.2020.03.011
de Jongh J, Verweij NJF, Yaqub M, van Denderen CJ, van der Horst-Bruinsma IE, Bot JCJ et al (2023) [(18)F]Fluoride PET provides distinct information on disease activity in ankylosing spondylitis as compared to MRI and conventional radiography. Eur J Nucl Med Mol Imaging 50(5):1351–1359. https://doi.org/10.1007/s00259-022-06080-5
Article CAS PubMed Google Scholar
Hartley IR, Gafni RI, Roszko KL, Brown SM, de Castro LF, Saikali A et al (2022) Determination of FGF23 levels for the diagnosis of FGF23-mediated hypophosphatemia. J Bone Miner Res 37(11):2174–2185. https://doi.org/10.1002/jbmr.4702
Article CAS PubMed Google Scholar
Wolfe F (1999) Determinants of WOMAC function, pain and stiffness scores: evidence for the role of low back pain, symptom counts, fatigue and depression in osteoarthritis, rheumatoid arthritis and fibromyalgia. Rheumatology (Oxford) 38(4):355–361. https://doi.org/10.1093/rheumatology/38.4.355
留言 (0)