Force drifts and matching errors in the lower extremities: implications for the control and perception of foot force

Abolins V, Latash ML (2022a) Unintentional force drifts as consequences of indirect force control with spatial referent coordinates. Neuroscience 481:156–165

Article  PubMed  Google Scholar 

Abolins V, Latash ML (2022b) Unintentional force drifts across the human fingers: implications for the neural control of finger tasks. Exp Brain Res 240:751–761

Article  PubMed  Google Scholar 

Ambike S, Mattos D, Zatsiorsky VM, Latash ML (2016) Unsteady steady-states: Central causes of unintentional force drift. Exp Brain Res 234:3597–3611

Article  PubMed  PubMed Central  Google Scholar 

Ambike S, Paclet F, Zatsiorsky VM, Latash ML (2014) Factors affecting grip force: anatomy, mechanics, and referent configurations. Exp Brain Res 232:1219–1231

Article  PubMed  PubMed Central  Google Scholar 

Ambike S, Zatsiorsky VM, Latash ML (2015) Processes underlying unintentional finger force changes in the absence of visual feedback. Exp Brain Res 233:711–721

Article  PubMed  Google Scholar 

Bernstein NA (1947) On the construction of movements. Medgiz: Moscow (in Russian). English translation is in: Latash ML (Ed.) (2020) Bernstein’s Construction of Movements. Routledge: Abingdon, UK

Burstedt MK, Flanagan JR, Johansson RS (1999) Control of grasp stability in humans under different frictional conditions during multidigit manipulation. J Neurophysiol 82:2393–2405

Article  PubMed  Google Scholar 

Cole KJ, Johansson RS (1993) Friction at the digit-object interface scales the sensorimotor transformation for grip responses to pulling loads. Exp Brain Res 95:523–532

Article  PubMed  Google Scholar 

Cuadra C, Corey J, Latash ML (2021a) Distortions of the efferent copy during force perception: a study of force drifts and effects of muscle vibration. Neuroscience 457:139–154

Article  PubMed  Google Scholar 

Cuadra C, Gilmore R, Latash ML (2021b) Finger force matching and verbal reports: testing predictions of the Iso-Perceptual Manifold (IPM) concept. J Mot Behav 53:598–610

Article  PubMed  Google Scholar 

Cuadra C, Wojnicz W, Kozinc Z, Latash ML (2020) Perceptual and motor effects of muscle co-activation in a force production task. Neuroscience 437:34–44

Article  PubMed  Google Scholar 

De Freitas PB, Freitas SMSF, Lewis MM, Huang X, Latash ML (2019) Individual preferences in motor coordination seen across the two hands: relations to movement stability and optimality. Exp Brain Res 237:1–13

Article  PubMed  Google Scholar 

Elias LJ, Bryden MP (1998) Footedness is a better predictor of language lateralisation than handedness. Laterality 3:41–51

Article  PubMed  Google Scholar 

Elias LJ, Bryden MP, Bulman-Fleming MB (1998) Footedness is a better predictor than is handedness for emotional lateralization. Neuropsychologia 36:37–43

Article  PubMed  Google Scholar 

Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Physiol 586:11–23

Article  PubMed  Google Scholar 

Enoka RM, Stuart DG (1992) Neurobiology of muscle fatigue. J Appl Physiol 72:1631–1648

Article  PubMed  Google Scholar 

Feldman AG (1966) Functional tuning of the nervous system with control of movement or maintenance of a steady posture. II. Controllable parameters of the muscle. Biophysics 11:565–578

Google Scholar 

Feldman AG (1986) Once more on the equilibrium-point hypothesis (λ-model) for motor control. J Mot Behav 18:17–54

Article  PubMed  Google Scholar 

Feldman AG (2009) New insights into action-perception coupling. Exp Brain Res 194:39–58

Article  PubMed  Google Scholar 

Feldman AG (2015) Referent control of action and perception: challenging conventional theories in behavioral science. Springer, NY

Book  Google Scholar 

Feldman AG (2016) Active sensing without efference copy: referent control of perception. J Neurophysiol 116:960–976

Article  PubMed  PubMed Central  Google Scholar 

Feldman AG (2019) Indirect, referent control of motor actions underlies directional tuning of neurons. J Neurophysiol 121:823–841

Article  PubMed  Google Scholar 

Feldman AG, Latash ML (1982) Afferent and efferent components of joint position sense: interpretation of kinaesthetic illusions. Biol Cybern 42:205–214

Article  PubMed  Google Scholar 

Feldman AG, Levin MF, Garofolini A, Piscitelli D, Zhang L (2021) Central pattern generator and human locomotion in the context of referent control of motor actions. Clin Neurophysiol 132:2870–2889

Article  PubMed  Google Scholar 

Feldman AG, Orlovsky GN (1972) The influence of different descending systems on the tonic stretch reflex in the cat. Exp Neurol 37:481–494

Article  PubMed  Google Scholar 

Flash T (1987) The control of hand equilibrium trajectories in multi-joint arm movements. Biol Cybern 57:257–274

Article  PubMed  Google Scholar 

Friedman J, Flash T (2007) Task-dependent selection of grasp kinematics and stiffness in human object manipulation. Cortex 43:444–460

Article  PubMed  Google Scholar 

Ghez C, Gordon J (1987) Trajectory control in targeted force impulses. I. Role of opposing muscles. Exp Brain Res 67:225–240

Article  PubMed  Google Scholar 

Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25

Article  PubMed  Google Scholar 

Gordon AM, Ingvarsson PE, Forssberg H (1997) Anticipatory control of manipulative forces in Parkinson’s disease. Exp Neurol 145:477–488

Article  PubMed  Google Scholar 

Gorniak SL, Zatsiorsky VM, Latash ML (2010) Manipulation of a fragile object. Exp Brain Res 202:413–430

Article  PubMed  Google Scholar 

Gottlieb GL, Corcos DM, Agarwal GC (1989) Strategies for the control of voluntary movements with one mechanical degree of freedom. Behav Brain Sci 12:189–250

Article  Google Scholar 

Ilmane N, Sangani S, Feldman AG (2013) Corticospinal control strategies underlying voluntary and involuntary wrist movements. Behav Brain Res 236:350–358

Article  PubMed  Google Scholar 

Johansson RS (1996) Sensory control of dexterous manipulation in humans. In: Wing A, Haggard P, Flanagan R (eds) Hand and Brain. Academic, San Diego, CA, pp 381–414

Chapter  Google Scholar 

Johansson RS, Westling G (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp Brain Res 56:550–564

Article  PubMed  Google Scholar 

Jo HJ, Park J, Lewis MM, Huang X, Latash ML (2015) Prehension synergies and hand function in early-stage Parkinson’s disease. Exp Brain Res 233:425–440

Article  PubMed  Google Scholar 

Kang Y, Harris LJ (2000) Handedness and footedness in Korean college students. Brain Cogn 43:268–274

PubMed  Google Scholar 

Latash ML (2010) Motor synergies and the equilibrium-point hypothesis. Motor Control 14:294–322

Article  PubMed  PubMed Central  Google Scholar 

Latash ML (2018) Muscle co-activation: definitions, mechanisms, and functions. J Neurophysiol 120:88–104

Article  PubMed  PubMed Central  Google Scholar 

Latash ML (2019) Physics of Biological Action and Perception. Academic, New York, NY

留言 (0)

沒有登入
gif