Agrawal Y, Carey JP, Della Santina CC et al (2009) Disorders of balance and vestibular function in US adults. Arch Intern Med 169:938–944. https://doi.org/10.1001/archinternmed.2009.66
Aihara T, Kitajo K, Nozaki D, Yamamoto Y (2008) Internal noise determines external stochastic resonance in visual perception. Vis Res 48:1569–1573. https://doi.org/10.1016/j.visres.2008.04.022
Aihara T, Kitajo K, Nozaki D, Yamamoto Y (2010) How does stochastic resonance work within the human brain? – psychophysics of internal and external noise. Chem Phys 375:616–624. https://doi.org/10.1016/j.chemphys.2010.04.027
Assländer L, Giboin LS, Gruber M et al (2021) No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults. Sci Rep 11:12327. https://doi.org/10.1038/s41598-021-91808-w
Article PubMed PubMed Central CAS Google Scholar
Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys Math Gen 14:L453–L457. https://doi.org/10.1088/0305-4470/14/11/006
Bermúdez Rey MC, Clark TK, Wang W et al (2016) Vestibular perceptual thresholds increase above the age of 40. Front Neurol 7:1–17. https://doi.org/10.3389/fneur.2016.00162
Carriot J, McAllister G, Hooshangnejad H et al (2022) Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways. Nat Commun 13:2612. https://doi.org/10.1038/s41467-022-30348-x
Article PubMed PubMed Central CAS Google Scholar
Casale J, Browne T, Murray IV, Gupta G (2024) Physiology, vestibular system. StatPearls. StatPearls Publishing, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK532978/
Chaudhuri SE, Merfeld DM (2013) Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions. Exp Brain Res 225:133–146. https://doi.org/10.1007/s00221-012-3354-7
Clark TK, Merfeld DM (2021) Statistical approaches to identifying lapses in psychometric response data. Psychon Bull Rev 28:1433–1457. https://doi.org/10.3758/s13423-021-01876-2
Fujimoto C, Yamamoto Y, Kamogashira T et al (2016) Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep 6:37575. https://doi.org/10.1038/srep37575
Article PubMed PubMed Central CAS Google Scholar
Fujimoto C, Egami N, Kawahara T et al (2018) Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol 9:1–9. https://doi.org/10.3389/fneur.2018.00900
Galvan-Garza R (2016) Enhancement of perception with the application of stochastic vestibular stimulation. Massachusetts Institute of Technology
Galvan-Garza RC, Clark TK, Mulavara AP, Oman CM (2018) Exhibition of stochastic resonance in vestibular tilt motion perception. Brain Stimul 11:716–722. https://doi.org/10.1016/j.brs.2018.03.017
Article PubMed CAS Google Scholar
García-Pérez MA, Alcalá-Quintana R (2005) Sampling plans for fitting the psychometric function. Span J Psychol 8:256–289
Gökçe E, Milot E, Langeard A, Quarck G (2024) Impact of repetitive home-based galvanic vestibular stimulation on cognitive skills in healthy older adults. Exp Gerontol 194:112504. https://doi.org/10.1016/j.exger.2024.112504
Hupfeld KE, McGregor HR, Koppelmans V et al (2021) Brain and behavioral evidence for reweighting of vestibular inputs with long-duration spaceflight. Cereb Cortex 1–15. https://doi.org/10.1093/cercor/bhab239
Inukai Y, Masaki M, Otsuru N et al (2018) Effect of noisy galvanic vestibular stimulation in community-dwelling elderly people: A randomised controlled trial. J Neuroeng Rehabil 15:1–7. https://doi.org/10.1186/s12984-018-0407-6
Iwasaki S, Yamamoto Y, Togo F et al (2014) Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 82:969–975. https://doi.org/10.1212/WNL.0000000000000215
Karmali F, Rey MCB, Clark TK et al (2017) Multivariate analyses of balance test performance,vestibular thresholds, and age. Front Neurol 8:578. https://doi.org/10.3389/fneur.2017.00578
Article PubMed PubMed Central Google Scholar
Keywan A, Wuehr M, Pradhan C, Jahn K (2018) Noisy galvanic stimulation improves roll-tilt vestibular perception in healthy subjects. Front Neurol 9:1–7. https://doi.org/10.3389/fneur.2018.00083
Keywan A, Jahn K, Wuehr M (2019) Noisy galvanic vestibular stimulation primarily affects Otolith-mediated motion perception. Neuroscience 399:161–166. https://doi.org/10.1016/j.neuroscience.2018.12.031
Article PubMed CAS Google Scholar
Lajoie K, Marigold DS, Valdés BA, Menon C (2021) The potential of noisy galvanic vestibular stimulation for optimizing and assisting human performance. Neuropsychologia 152:107751. https://doi.org/10.1016/j.neuropsychologia.2021.107751
MacDougall HG, Moore ST, Curthoys IS, Black FO (2006) Modeling postural instability with galvanic vestibular stimulation. Exp Brain Res 172:208–220. https://doi.org/10.1007/s00221-005-0329-y
Mackrous I, Carriot J, Cullen KE, Chacron MJ (2020) Neural variability determines coding strategies for natural self-motion in macaque monkeys. Elife 9:e57484. https://doi.org/10.7554/ELIFE.57484
Article PubMed PubMed Central CAS Google Scholar
McDonnell MD, Abbott D (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol 5:e1000348. https://doi.org/10.1371/journal.pcbi.1000348
Article PubMed PubMed Central CAS Google Scholar
McLaren R, Smith PF, Taylor RL et al (2023) Scoping out noisy galvanic vestibular stimulation: a review of the parameters used to improve postural control. Front Neurosci 17:1–16. https://doi.org/10.3389/fnins.2023.1156796
Mitchell DE, Kwan A, Carriot J et al (2018) Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways. Elife 7:e43019. https://doi.org/10.7554/eLife.43019
Article PubMed PubMed Central Google Scholar
Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: A tutorial and review of application. Clin Neurophysiol 115:267–281. https://doi.org/10.1016/j.clinph.2003.09.014
Mulavara AP, Fiedler MJ, Kofman IS et al (2011) Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics. Exp Brain Res 210:303–312. https://doi.org/10.1007/s00221-011-2633-z
Mulavara A, Kofman I, DeDios Y et al (2015) Using low levels of stochastic vestibular stimulation to improve locomotor stability. Front Syst Neurosci 9:117. https://doi.org/10.3389/fnsys.2015.00117
Article PubMed PubMed Central Google Scholar
Ozdemir RA, Goel R, Reschke MF et al (2018) Critical role of somatosensation in postural control following spaceflight: vestibularly deficient astronauts are not able to maintain upright stance during compromised somatosensation. Front Physiol 9:1–13. https://doi.org/10.3389/fphys.2018.01680
Putman EJ, Galvan-Garza RC, Clark TK (2021) The effect of noisy galvanic vestibular stimulation on learning of functional mobility and manual control nulling sensorimotor tasks. Front Hum Neurosci 15:756674. https://doi.org/10.3389/fnhum.2021.756674
Article PubMed PubMed Central Google Scholar
Schneider AD, Jamali M, Carriot J et al (2015) The increased sensitivity of irregular peripheral canal and otolith vestibular afferents optimizes their encoding of natural stimuli. J Neurosci 35:5522–5536. https://doi.org/10.1523/JNEUROSC
留言 (0)