Noisy galvanic vestibular stimulation induces stochastic resonance in vestibular perceptual thresholds assessed efficiently using confidence reports

Agrawal Y, Carey JP, Della Santina CC et al (2009) Disorders of balance and vestibular function in US adults. Arch Intern Med 169:938–944. https://doi.org/10.1001/archinternmed.2009.66

Article  PubMed  Google Scholar 

Aihara T, Kitajo K, Nozaki D, Yamamoto Y (2008) Internal noise determines external stochastic resonance in visual perception. Vis Res 48:1569–1573. https://doi.org/10.1016/j.visres.2008.04.022

Article  PubMed  Google Scholar 

Aihara T, Kitajo K, Nozaki D, Yamamoto Y (2010) How does stochastic resonance work within the human brain? – psychophysics of internal and external noise. Chem Phys 375:616–624. https://doi.org/10.1016/j.chemphys.2010.04.027

Article  CAS  Google Scholar 

Assländer L, Giboin LS, Gruber M et al (2021) No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults. Sci Rep 11:12327. https://doi.org/10.1038/s41598-021-91808-w

Article  PubMed  PubMed Central  CAS  Google Scholar 

Benzi R, Sutera A, Vulpiani A (1981) The mechanism of stochastic resonance. J Phys Math Gen 14:L453–L457. https://doi.org/10.1088/0305-4470/14/11/006

Article  Google Scholar 

Bermúdez Rey MC, Clark TK, Wang W et al (2016) Vestibular perceptual thresholds increase above the age of 40. Front Neurol 7:1–17. https://doi.org/10.3389/fneur.2016.00162

Article  Google Scholar 

Carriot J, McAllister G, Hooshangnejad H et al (2022) Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways. Nat Commun 13:2612. https://doi.org/10.1038/s41467-022-30348-x

Article  PubMed  PubMed Central  CAS  Google Scholar 

Casale J, Browne T, Murray IV, Gupta G (2024) Physiology, vestibular system. StatPearls. StatPearls Publishing, Treasure Island. https://www.ncbi.nlm.nih.gov/books/NBK532978/

Google Scholar 

Chaudhuri SE, Merfeld DM (2013) Signal detection theory and vestibular perception: III. Estimating unbiased fit parameters for psychometric functions. Exp Brain Res 225:133–146. https://doi.org/10.1007/s00221-012-3354-7

Article  PubMed  Google Scholar 

Clark TK, Merfeld DM (2021) Statistical approaches to identifying lapses in psychometric response data. Psychon Bull Rev 28:1433–1457. https://doi.org/10.3758/s13423-021-01876-2

Article  PubMed  Google Scholar 

Fujimoto C, Yamamoto Y, Kamogashira T et al (2016) Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep 6:37575. https://doi.org/10.1038/srep37575

Article  PubMed  PubMed Central  CAS  Google Scholar 

Fujimoto C, Egami N, Kawahara T et al (2018) Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol 9:1–9. https://doi.org/10.3389/fneur.2018.00900

Article  Google Scholar 

Galvan-Garza R (2016) Enhancement of perception with the application of stochastic vestibular stimulation. Massachusetts Institute of Technology

Galvan-Garza RC, Clark TK, Mulavara AP, Oman CM (2018) Exhibition of stochastic resonance in vestibular tilt motion perception. Brain Stimul 11:716–722. https://doi.org/10.1016/j.brs.2018.03.017

Article  PubMed  CAS  Google Scholar 

García-Pérez MA, Alcalá-Quintana R (2005) Sampling plans for fitting the psychometric function. Span J Psychol 8:256–289

Article  PubMed  Google Scholar 

Gökçe E, Milot E, Langeard A, Quarck G (2024) Impact of repetitive home-based galvanic vestibular stimulation on cognitive skills in healthy older adults. Exp Gerontol 194:112504. https://doi.org/10.1016/j.exger.2024.112504

Article  PubMed  Google Scholar 

Hupfeld KE, McGregor HR, Koppelmans V et al (2021) Brain and behavioral evidence for reweighting of vestibular inputs with long-duration spaceflight. Cereb Cortex 1–15. https://doi.org/10.1093/cercor/bhab239

Inukai Y, Masaki M, Otsuru N et al (2018) Effect of noisy galvanic vestibular stimulation in community-dwelling elderly people: A randomised controlled trial. J Neuroeng Rehabil 15:1–7. https://doi.org/10.1186/s12984-018-0407-6

Article  Google Scholar 

Iwasaki S, Yamamoto Y, Togo F et al (2014) Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 82:969–975. https://doi.org/10.1212/WNL.0000000000000215

Article  PubMed  Google Scholar 

Karmali F, Rey MCB, Clark TK et al (2017) Multivariate analyses of balance test performance,vestibular thresholds, and age. Front Neurol 8:578. https://doi.org/10.3389/fneur.2017.00578

Article  PubMed  PubMed Central  Google Scholar 

Keywan A, Wuehr M, Pradhan C, Jahn K (2018) Noisy galvanic stimulation improves roll-tilt vestibular perception in healthy subjects. Front Neurol 9:1–7. https://doi.org/10.3389/fneur.2018.00083

Article  Google Scholar 

Keywan A, Jahn K, Wuehr M (2019) Noisy galvanic vestibular stimulation primarily affects Otolith-mediated motion perception. Neuroscience 399:161–166. https://doi.org/10.1016/j.neuroscience.2018.12.031

Article  PubMed  CAS  Google Scholar 

Lajoie K, Marigold DS, Valdés BA, Menon C (2021) The potential of noisy galvanic vestibular stimulation for optimizing and assisting human performance. Neuropsychologia 152:107751. https://doi.org/10.1016/j.neuropsychologia.2021.107751

Article  PubMed  Google Scholar 

MacDougall HG, Moore ST, Curthoys IS, Black FO (2006) Modeling postural instability with galvanic vestibular stimulation. Exp Brain Res 172:208–220. https://doi.org/10.1007/s00221-005-0329-y

Article  PubMed  Google Scholar 

Mackrous I, Carriot J, Cullen KE, Chacron MJ (2020) Neural variability determines coding strategies for natural self-motion in macaque monkeys. Elife 9:e57484. https://doi.org/10.7554/ELIFE.57484

Article  PubMed  PubMed Central  CAS  Google Scholar 

McDonnell MD, Abbott D (2009) What is stochastic resonance? Definitions, misconceptions, debates, and its relevance to biology. PLoS Comput Biol 5:e1000348. https://doi.org/10.1371/journal.pcbi.1000348

Article  PubMed  PubMed Central  CAS  Google Scholar 

McLaren R, Smith PF, Taylor RL et al (2023) Scoping out noisy galvanic vestibular stimulation: a review of the parameters used to improve postural control. Front Neurosci 17:1–16. https://doi.org/10.3389/fnins.2023.1156796

Article  Google Scholar 

Mitchell DE, Kwan A, Carriot J et al (2018) Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways. Elife 7:e43019. https://doi.org/10.7554/eLife.43019

Article  PubMed  PubMed Central  Google Scholar 

Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: A tutorial and review of application. Clin Neurophysiol 115:267–281. https://doi.org/10.1016/j.clinph.2003.09.014

Article  PubMed  Google Scholar 

Mulavara AP, Fiedler MJ, Kofman IS et al (2011) Improving balance function using vestibular stochastic resonance: optimizing stimulus characteristics. Exp Brain Res 210:303–312. https://doi.org/10.1007/s00221-011-2633-z

Article  PubMed  Google Scholar 

Mulavara A, Kofman I, DeDios Y et al (2015) Using low levels of stochastic vestibular stimulation to improve locomotor stability. Front Syst Neurosci 9:117. https://doi.org/10.3389/fnsys.2015.00117

Article  PubMed  PubMed Central  Google Scholar 

Ozdemir RA, Goel R, Reschke MF et al (2018) Critical role of somatosensation in postural control following spaceflight: vestibularly deficient astronauts are not able to maintain upright stance during compromised somatosensation. Front Physiol 9:1–13. https://doi.org/10.3389/fphys.2018.01680

Article  Google Scholar 

Putman EJ, Galvan-Garza RC, Clark TK (2021) The effect of noisy galvanic vestibular stimulation on learning of functional mobility and manual control nulling sensorimotor tasks. Front Hum Neurosci 15:756674. https://doi.org/10.3389/fnhum.2021.756674

Article  PubMed  PubMed Central  Google Scholar 

Schneider AD, Jamali M, Carriot J et al (2015) The increased sensitivity of irregular peripheral canal and otolith vestibular afferents optimizes their encoding of natural stimuli. J Neurosci 35:5522–5536. https://doi.org/10.1523/JNEUROSC

留言 (0)

沒有登入
gif