Angelaki DE, Cullen KE (2008) Vestibular system: The many facets of a multimodal sense. Annu Rev Neurosci 31:125–150. https://doi.org/10.1146/annurev.neuro.31.060407.125555
Assländer L, Giboin LS, Gruber M et al (2021) No evidence for stochastic resonance effects on standing balance when applying noisy galvanic vestibular stimulation in young healthy adults. Sci Rep 11:1–10. https://doi.org/10.1038/s41598-021-91808-w
Day BL, Fitzpatrick RC (2005) The vestibular system. Curr Biol 15:583–586. https://doi.org/10.1016/j.cub.2005.07.053
Ertl M, Klimek M, Boegle R et al (2018) Vestibular perception thresholds tested by galvanic vestibular stimulation. J Neurol 265:54–56
Fitzpatrick RC, Day BL, Forbes PA et al (2015) Probing the human vestibular system with galvanic stimulation Neural Control of Movement Probing the human vestibular system with galvanic stimulation. 2301–2316. https://doi.org/10.1152/japplphysiol.00008.2004
Fritz CO, Morris PE, Richler JJ (2012) Effect size estimates: Current use, calculations, and interpretation. J Exp Psychol Gen 141:2–18
Fujimoto C, Yamamoto Y, Kamogashira T et al (2016) Noisy galvanic vestibular stimulation induces a sustained improvement in body balance in elderly adults. Sci Rep 6:1–8. https://doi.org/10.1038/srep37575
Fujimoto C, Egami N, Kawahara T et al (2018) Noisy galvanic vestibular stimulation sustainably improves posture in bilateral vestibulopathy. Front Neurol. https://doi.org/10.3389/fneur.2018.00900
Article PubMed PubMed Central Google Scholar
Galvan-Garza RC, Clark TK, Mulavara AP, Oman CM (2018) Exhibition of stochastic resonance in vestibular tilt motion perception. Brain Stimul 11:716–722. https://doi.org/10.1016/j.brs.2018.03.017
Gammaitoni L, Jung P, Marchesoni F (1998) Stochastic resonance
Gensberger KD, Kaufmann AK, Dietrich H et al (2016) Galvanic vestibular stimulation: Cellular substrates and response patterns of neurons in the vestibulo-ocular network. J Neurosci 36:9097–9110. https://doi.org/10.1523/JNEUROSCI.4239-15.2016
Article PubMed PubMed Central Google Scholar
Goel R, Rosenberg MJ, Cohen HS et al (2019) Calibrating balance perturbation using electrical stimulation of the vestibular system. J Neurosci Methods 311:193–199. https://doi.org/10.1016/j.jneumeth.2018.10.012
Hannan KB, Todd MK, Pearson NJ et al (2021a) Vestibular attenuation to random-waveform galvanic vestibular stimulation during standing and treadmill walking. Sci Rep 11:1–12. https://doi.org/10.1038/s41598-021-87485-4
Hannan KB, Todd MK, Pearson NJ et al (2021b) Absence of Nonlinear Coupling Between Electric Vestibular Stimulation and Evoked Forces During Standing Balance. Front Hum Neurosci 15:1–7. https://doi.org/10.3389/fnhum.2021.631782
Hlavacka F (2015) The visual feedback gain influence upon the regulation of the upright posture in man
Inukai Y, Masaki M, Otsuru N et al (2018) Effect of noisy galvanic vestibular stimulation in community-dwelling elderly people: A randomised controlled trial. J Neuroeng Rehabil 15:1–7. https://doi.org/10.1186/s12984-018-0407-6
Iwasaki S, Yamamoto Y, Togo F et al (2014) Noisy vestibular stimulation improves body balance in bilateral vestibulopathy. Neurology 82:969–975. https://doi.org/10.1212/WNL.0000000000000215
Jahn K, Naeßl A, Schneider E et al (2003) Inverse U-shaped curve for age dependency of torsional eye movement responses to galvanic vestibular stimulation. Brain 126:1579–1589. https://doi.org/10.1093/brain/awg163
Kim DJ, Yogendrakumar V, Chiang J et al (2013) Noisy Galvanic Vestibular Stimulation Modulates the Amplitude of EEG Synchrony Patterns. PLoS ONE. https://doi.org/10.1371/journal.pone.0069055
Article PubMed PubMed Central Google Scholar
Kwan A, Forbes PA, Mitchell DE et al (2019) Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nat Commun doi. https://doi.org/10.1038/s41467-019-09738-1
McHugh ML (2012) Lessons in biostatistics interrater reliability: the kappa statistic. Biochem Med 22:276–282
Mikhail Y, Charron J, Mac-Thiong JM, Barthelemy D (2021) Assessing head acceleration to identify a motor threshold to galvanic vestibular stimulation. J Neurophysiol 125:2191–2205. https://doi.org/10.1152/JN.00254.2020
Moriyama H, Itoh M, Shimada K, Otsuka N (2007) Morphometric analysis of fibers of the human vestibular nerve: Sex differences. Eur Arch Oto-Rhino-Laryngology 264:471–475. https://doi.org/10.1007/s00405-006-0197-5
Moss F, Ward LM, Sannita WG (2004) Stochastic resonance and sensory information processing: A tutorial and review of application. Clin Neurophysiol 115:267–281. https://doi.org/10.1016/j.clinph.2003.09.014
Mulavara AP, Fiedler MJ, Kofman IS et al (2011) Improving balance function using vestibular stochastic resonance: Optimizing stimulus characteristics. Exp Brain Res 210:303–312. https://doi.org/10.1007/s00221-011-2633-z
Mulavara AP, Kofman IS, De Dios YE et al (2015) Using low levels of stochastic vestibular stimulation to improve locomotor stability. Front Syst Neurosci 9:1–14. https://doi.org/10.3389/fnsys.2015.00117
Nguyen TT, Kang JJ, Oh SY (2022) Thresholds for vestibular and cutaneous perception and oculomotor response induced by galvanic vestibular stimulation. Front Neurol. https://doi.org/10.3389/fneur.2022.955088
Article PubMed PubMed Central Google Scholar
Nooristani M, Maheu M, Houde MS et al (2019) Questioning the lasting effect of galvanic vestibular stimulation on postural control. PLoS ONE 14:1–7. https://doi.org/10.1371/journal.pone.0224619
Nozaki D, Collins JJ, Yamamoto Y (1999) Mechanism of stochastic resonance enhancement in neuronal models driven by [formula presented] noise. Phys Rev E - Stat Physics, Plasmas, Fluids. Relat Interdiscip Top 60:4637–4644. https://doi.org/10.1103/PhysRevE.60.4637
Piccolo C, Bakkum A, Marigold DS (2020) Subthreshold stochastic vestibular stimulation affects balance-challenged standing and walking. PLoS ONE 15:1–16. https://doi.org/10.1371/journal.pone.0231334
Pinto A (2021) Pink noise amplifies stochastic resonance in neural circuits. Eng Res Express. https://doi.org/10.1088/2631-8695/ab8442
Rice D (2021) (Unpublished Thesis) No evidence of stochastic resonance in postural sway response to noisy galvanic vestibular stimulation in healthy young adults. https://digitalcommons.usu.edu/gradreports/1579
Sadeghi SG, Chacron MJ, Taylor MC, Cullen KE (2007) Neural variability, detection thresholds, and information transmission in the vestibular system. J Neurosci 27:771–781. https://doi.org/10.1523/JNEUROSCI.4690-06.2007
Article PubMed PubMed Central Google Scholar
Schniepp R, Boerner JC, Decker J et al (2018) Noisy vestibular stimulation improves vestibulospinal function in patients with bilateral vestibulopathy. J Neurol 265:57–62. https://doi.org/10.1007/s00415-018-8814-y
Soma R, Nozaki D, Kwak S, Yamamoto Y (2003) [Formula presented] Noise Outperforms White Noise in Sensitizing Baroreflex Function in the Human Brain. Phys Rev Lett 91:1–4. https://doi.org/10.1103/PhysRevLett.91.078101
Utz KS, Dimova V, Oppenländer K, Kerkhoff G (2010) Electrified minds: Transcranial direct current stimulation (tDCS) and Galvanic Vestibular Stimulation (GVS) as methods of non-invasive brain stimulation in neuropsychology-A review of current data and future implications. Neuropsychologia 48:2789–2810
Wuehr M, Nusser E, Krafczyk S et al (2016) Noise-Enhanced Vestibular Input Improves Dynamic Walking Stability in Healthy Subjects. Brain Stimul 9:109–116. https://doi.org/10.1016/j.brs.2015.08.017
Wuehr M, Boerner JC, Pradhan C et al (2018) Stochastic resonance in the human vestibular system – Noise-induced facilitation of vestibulospinal reflexes. Brain Stimul 11:261–263. https://doi.org/10.1016/j.brs.2017.10.016
留言 (0)