Bagnato G, Harari S (2015) Cellular interactions in the pathogenesis of interstitial lung diseases. Eur Respir Rev 24:102–114
Article PubMed PubMed Central Google Scholar
Wang X, Wang Y, Rong S, Ma H (2014) [Early treatment with hepatocyte growth factor improves pulmonary artery and right ventricular remodeling in rats with pulmonary artery hypertension by modulating cytokines expression]. Zhonghua Jie He He Hu Xi Za Zhi 37:427–432
Spagnolo P, Cottin V (2017) Genetics of idiopathic pulmonary fibrosis: from mechanistic pathways to personalised medicine. J Med Genet 54:93–99
Wolters PJ, Collard HR, Jones KD (2014) Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol 9:157–179
Article CAS PubMed Google Scholar
Piera-Velazquez S, Li Z, Jimenez SA (2011) Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol 179:1074–1080
Article CAS PubMed PubMed Central Google Scholar
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG et al (2021) Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 78:2031–2057
Article CAS PubMed Google Scholar
Gaikwad AV, Eapen MS, McAlinden KD, Chia C, Larby J, Myers S et al (2020) Endothelial to mesenchymal transition (EndMT) and vascular remodeling in pulmonary hypertension and idiopathic pulmonary fibrosis. Expert Rev Respir Med 14:1027–1043
Article CAS PubMed Google Scholar
Magro CM, Waldman WJ, Knight DA, Allen JN, Nadasdy T, Frambach GE et al (2006) Idiopathic pulmonary fibrosis related to endothelial injury and antiendothelial cell antibodies. Hum Immunol 67:284–297
Article CAS PubMed Google Scholar
Medici D, Kalluri R (2012) Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 22:379–384
Article CAS PubMed PubMed Central Google Scholar
Pérez L, Muñoz-Durango N, Riedel CA, Echeverría C, Kalergis AM, Cabello-Verrugio C et al (2017) Endothelial-to-mesenchymal transition: Cytokine-mediated pathways that determine endothelial fibrosis under inflammatory conditions. Cytokine Growth Factor Rev 33:41–54
Pinto MT, Covas DT, Kashima S, Rodrigues CO (2016) Endothelial Mesenchymal Transition: Comparative Analysis of Different Induction Methods. Biol Proced Online 18:10
Article PubMed PubMed Central Google Scholar
Ramos C, Montaño M, García-Alvarez J, Ruiz V, Uhal BD, Selman M et al (2001) Fibroblasts from idiopathic pulmonary fibrosis and normal lungs differ in growth rate, apoptosis, and tissue inhibitor of metalloproteinases expression. Am J Respir Cell Mol Biol 24:591–598
Article CAS PubMed Google Scholar
Li Z, Jimenez SA (2011) Protein kinase Cδ and c-Abl kinase are required for transforming growth factor β induction of endothelial-mesenchymal transition in vitro. Arthritis Rheum 63:2473–2483
Article CAS PubMed PubMed Central Google Scholar
Medici D, Potenta S, Kalluri R (2011) Transforming growth factor-β2 promotes Snail-mediated endothelial-mesenchymal transition through convergence of Smad-dependent and Smad-independent signalling. Biochem J 437:515–520
Article CAS PubMed Google Scholar
Cho JG, Lee A, Chang W, Lee MS, Kim J (2018) Endothelial to Mesenchymal Transition Represents a Key Link in the Interaction between Inflammation and Endothelial Dysfunction. Front Immunol 9:294
Article PubMed PubMed Central Google Scholar
Rieder F, Kessler SP, West GA, Bhilocha S, de la Motte C, Sadler TM et al (2011) Inflammation-induced endothelial-to-mesenchymal transition: a novel mechanism of intestinal fibrosis. Am J Pathol 179:2660–2673
Article CAS PubMed PubMed Central Google Scholar
Thuan DTB, Zayed H, Eid AH, Abou-Saleh H, Nasrallah GK, Mangoni AA et al (2018) A Potential Link Between Oxidative Stress and Endothelial-to-Mesenchymal Transition in Systemic Sclerosis. Front Immunol 9:1985
Article PubMed PubMed Central Google Scholar
Pan JA, Zhang H, Lin H, Gao L, Zhang HL, Zhang JF et al (2021) Irisin ameliorates doxorubicin-induced cardiac perivascular fibrosis through inhibiting endothelial-to-mesenchymal transition by regulating ROS accumulation and autophagy disorder in endothelial cells. Redox Biol 46:102120
Article CAS PubMed PubMed Central Google Scholar
Gong L, Lei Y, Liu Y, Tan F, Li S, Wang X et al (2019) Vaccarin prevents ox-LDL-induced HUVEC EndMT, inflammation and apoptosis by suppressing ROS/p38 MAPK signaling. Am J Transl Res 11:2140–2154
CAS PubMed PubMed Central Google Scholar
Li Z, Chen B, Dong W, Kong M, Shao Y, Fan Z et al (2019) The Chromatin Remodeler Brg1 Integrates ROS Production and Endothelial-Mesenchymal Transition to Promote Liver Fibrosis in Mice. Front Cell Dev Biol 7:245
Article PubMed PubMed Central Google Scholar
Reinherz EL, Kung PC, Goldstein G, Levey RH, Schlossman SF (1980) Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci U S A 77:1588–1592
Article CAS PubMed PubMed Central Google Scholar
Howard M, Grimaldi JC, Bazan JF, Lund FE, Santos-Argumedo L, Parkhouse RM et al (1993) Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38. Science 262:1056–1059
Article CAS PubMed Google Scholar
Gan L, Liu D, Liu J, Chen E, Chen C, Liu L et al (2021) CD38 deficiency alleviates Ang II-induced vascular remodeling by inhibiting small extracellular vesicle-mediated vascular smooth muscle cell senescence in mice. Signal Transduct Target Ther 6:223
Article CAS PubMed PubMed Central Google Scholar
Xie L, Wen K, Li Q, Huang CC, Zhao JL, Zhao QH et al (2021) CD38 Deficiency Protects Mice from High Fat Diet-Induced Nonalcoholic Fatty Liver Disease through Activating NAD(+)/Sirtuins Signaling Pathways-Mediated Inhibition of Lipid Accumulation and Oxidative Stress in Hepatocytes. Int J Biol Sci 17:4305–4315
Article CAS PubMed PubMed Central Google Scholar
Guan XH, Hong X, Zhao N, Liu XH, Xiao YF, Chen TT et al (2017) CD38 promotes angiotensin II-induced cardiac hypertrophy. J Cell Mol Med 21:1492–1502
Article CAS PubMed PubMed Central Google Scholar
Wang LF, Miao LJ, Wang XN, Huang CC, Qian YS, Huang X et al (2018) CD38 deficiency suppresses adipogenesis and lipogenesis in adipose tissues through activating Sirt1/PPARγ signaling pathway. J Cell Mol Med 22:101–110
Article CAS PubMed Google Scholar
Cui H, Xie N, Banerjee S, Dey T, Liu RM, Antony VB et al (2022) CD38 Mediates Lung Fibrosis by Promoting Alveolar Epithelial Cell Aging. Am J Respir Crit Care Med 206:459–475
Yun E, Kook Y, Yoo KH, Kim KI, Lee MS, Kim J et al (2020) Endothelial to Mesenchymal Transition in Pulmonary Vascular Diseases. Biomedicines 8:639
Article CAS PubMed PubMed Central Google Scholar
Zhao W, Wang L, Wang Y, Yuan H, Zhao M, Lian H et al (2023) Injured Endothelial Cell: A Risk Factor for Pulmonary Fibrosis. Int J Mol Sci 24:8749
留言 (0)