Homologous recombination deficiency (HRD) diagnostics: underlying mechanisms and new perspectives

Nguyen, L., W. M. Martens, J., Van Hoeck, A., & Cuppen, E. (2020). Pan-cancer landscape of homologous recombination deficiency. Nature Communications 2020 11:1, 11(1), 1–12. https://doi.org/10.1038/s41467-020-19406-4

Eeckhoutte, A., Houy, A., Manié, E., Reverdy, M., Bièche, I., Marangoni, E., Popova, T. (2020). ShallowHRD: detection of homologous recombination deficiency from shallow whole genome sequencing. Bioinformatics, 36(12), 3888. https://doi.org/10.1093/BIOINFORMATICS/BTAA261

Pepe, F., Guerini-Rocco, E., Fassan, M., Fusco, N., Vacirca, D., Ranghiero, A., Iaccarino, A. (2023). In-house homologous recombination deficiency testing in ovarian cancer: A multi-institutional Italian pilot study. Journal of clinical pathology. https://doi.org/10.1136/JCP-2023-208852

Wu, Y., Xu, S., Cheng, S., Yang, J., & Wang, Y. (2023). Clinical application of PARP inhibitors in ovarian cancer: From molecular mechanisms to the current status. Journal of Ovarian Research, 16(1), 1–15. https://doi.org/10.1186/S13048-023-01094-5/TABLES/2

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lin, C., Liu, P., Shi, C., Qiu, L., Shang, D., Lu, Z., Liu, H. (2023). Therapeutic targeting of DNA damage repair pathways guided by homologous recombination deficiency scoring in ovarian cancers. Fundamental & clinical pharmacology, 37(2), 194–214. https://doi.org/10.1111/FCP.12834

Li, Q., Qian, W., Zhang, Y., Hu, L., Chen, S., & Xia, Y. (2023). A new wave of innovations within the DNA damage response. Signal Transduction and Targeted Therapy 2023 8:1, 8(1), 1–26. https://doi.org/10.1038/s41392-023-01548-8

Arcieri, M., Tius, V., Andreetta, C., Restaino, S., Biasioli, A., Poletto, E., Vizzielli, G. (2024). How BRCA and homologous recombination deficiency change therapeutic strategies in ovarian cancer: A review of literature. Frontiers in Oncology, 14, 1335196. https://doi.org/10.3389/fonc.2024.1335196

Incorvaia, L., Perez, A., Marchetti, C., Brando, C., Gristina, V., Cancelliere, D., Bazan, V. (2023). Theranostic biomarkers and PARP-inhibitors effectiveness in patients with non-BRCA associated homologous recombination deficient tumors: Still looking through a dirty glass window? Cancer Treatment Reviews, 121, 102650. https://doi.org/10.1016/J.CTRV.2023.102650

Doig, K. D., Fellowes, A. P., & Fox, S. B. (2023). Homologous recombination repair deficiency: An overview for pathologists. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc, 36(3). https://doi.org/10.1016/J.MODPAT.2022.100049

Ratnaparkhi, R., Javellana, M., Jewell, A., & Spoozak, L. (2024). Evaluation of homologous recombination deficiency in ovarian cancer. Current treatment options in oncology, 25(2), 237–260. https://doi.org/10.1007/S11864-024-01176-6

Article  PubMed  Google Scholar 

Li, W., Gao, L., Yi, X., Shi, S., Huang, J., Shi, L., Ying, J. (2023). Patient assessment and therapy planning based on homologous recombination repair deficiency. Genomics, proteomics & bioinformatics, 21(5), 962–975. https://doi.org/10.1016/J.GPB.2023.02.004

Herzog, T. J., Vergote, I., Gomella, L. G., Milenkova, T., French, T., Tonikian, R., Hussain, M. (2023). Testing for homologous recombination repair or homologous recombination deficiency for poly (ADP-ribose) polymerase inhibitors: A current perspective. European journal of cancer (Oxford, England : 1990), 179, 136–146. https://doi.org/10.1016/J.EJCA.2022.10.021

Paulet, L., Trecourt, A., Leary, A., Peron, J., Descotes, F., Devouassoux-Shisheboran, M., Lopez, J. (2022). Cracking the homologous recombination deficiency code: How to identify responders to PARP inhibitors. European journal of cancer (Oxford, England : 1990), 166, 87–99. https://doi.org/10.1016/J.EJCA.2022.01.037

Menezes, M. C. S., Raheem, F., Mina, L., Ernst, B., & Batalini, F. (2022). PARP inhibitors for breast cancer: Germline BRCA1/2 and Beyond. Cancers, 14(17). https://doi.org/10.3390/CANCERS14174332

Ragupathi, A., Singh, M., Perez, A. M., & Zhang, D. (2023). Targeting the BRCA1/2 deficient cancer with PARP inhibitors: Clinical outcomes and mechanistic insights. Frontiers in Cell and Developmental Biology, 11, 1133472. https://doi.org/10.3389/FCELL.2023.1133472/BIBTEX

Article  PubMed  PubMed Central  Google Scholar 

Rabban, J. T., Chen, L. M., & Devine, W. P. (2022). Homologous recombination deficiency and ovarian cancer treatment decisions: Practical implications for pathologists for tumor typing and reporting. Surgical pathology clinics, 15(2), 219–234. https://doi.org/10.1016/J.PATH.2022.02.003

Article  PubMed  Google Scholar 

Silva, S. B., Wanderley, C. W. S., & Colli, L. M. (2022). Immune checkpoint inhibitors in tumors harboring homologous recombination deficiency: Challenges in attaining efficacy. Frontiers in immunology, 13. https://doi.org/10.3389/FIMMU.2022.826577

Saeidi, H., Bakrin, I. H., Raju, C. S., Ismail, P., Saraf, M., & Khairul-Asri, M. G. (2023). Genetic aberrations of homologous recombination repair pathways in prostate cancer: The prognostic and therapeutic implications. Advances in medical sciences, 68(2), 359–365. https://doi.org/10.1016/J.ADVMS.2023.09.008

Article  CAS  PubMed  Google Scholar 

Garzón-Hernández, C., Ramírez-Merino, N., & Soberon, M. C. M. (2022). Molecular targeted therapy in oncology focusing on DNA repair mechanisms. Archives of medical research, 53(8), 807–817. https://doi.org/10.1016/J.ARCMED.2022.11.007

Article  PubMed  Google Scholar 

Dariane, C., & Timsit, M. O. (2022). DNA-damage-repair gene alterations in genitourinary malignancies. European surgical research. Europaische chirurgische Forschung. Recherches chirurgicales europeennes, 63(4), 155–164. https://doi.org/10.1159/000526415

Ali, U., Vungarala, S., & Tiriveedhi, V. (2024). Genomic features of homologous recombination deficiency in breast cancer: Impact on testing and immunotherapy. Genes 2024, Vol. 15, Page 162, 15(2), 162. https://doi.org/10.3390/GENES15020162

Fuh, K., Mullen, M., Blachut, B., Stover, E., Konstantinopoulos, P., Liu, J., Vindigni, A. (2020). Homologous recombination deficiency real-time clinical assays, ready or not? Gynecologic oncology, 159(3), 877–886. https://doi.org/10.1016/J.YGYNO.2020.08.035

Guffanti, F., Mengoli, I., & Damia, G. (2024). Current HRD assays in ovarian cancer: Differences, pitfalls, limitations, and novel approaches. Frontiers in Oncology, 14, 1405361. https://doi.org/10.3389/FONC.2024.1405361

Article  CAS  PubMed  PubMed Central  Google Scholar 

Capoluongo, E. D., Pellegrino, B., Arenare, L., Califano, D., Scambia, G., Beltrame, L., Pignata, S. (2022). Alternative academic approaches for testing homologous recombination deficiency in ovarian cancer in the MITO16A/MaNGO-OV2 trial. ESMO Open, 7(5). https://doi.org/10.1016/j.esmoop.2022.100585

Bryant, H. E., Schultz, N., Thomas, H. D., Parker, K. M., Flower, D., Lopez, E., Helleday, T. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 434(7035), 913–917. https://doi.org/10.1038/NATURE03443

Farmer, H., McCabe, H., Lord, C. J., Tutt, A. H. J., Johnson, D. A., Richardson, T. B., Ashworth, A. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005 434:7035, 434(7035), 917–921. https://doi.org/10.1038/nature03445

Kim, G., Ison, G., McKee, A. E., Zhang, H., Tang, S., Gwise, T., Pazdur, R. (2015). FDA approval summary: Olaparib monotherapy in patients with deleterious germline BRCA-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 21(19), 4257–61. https://doi.org/10.1158/1078-0432.CCR-15-0887

First PARP Inhibitor Ok’d for Breast Cancer. (2018). Cancer discovery, 8(3), 256–257. https://doi.org/10.1158/2159-8290.CD-NB2018-008

Arora, S., Balasubramaniam, S., Zhang, H., Berman, T., Narayan, P., Suzman, D., Beaver, J. A. (2021). FDA approval summary: Olaparib monotherapy or in combination with bevacizumab for the maintenance treatment of patients with advanced ovarian cancer. The oncologist, 26(1), e164–e172. https://doi.org/10.1002/ONCO.13551

Ison, G., Howie, L. J., Amiri-Kordestani, L., Zhang, L., Tang, S., Sridhara, R., Pazdur, R. (2018). FDA approval summary: Niraparib for the maintenance treatment of patients with recurrent ovarian cancer in response to platinum-based chemotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research, 24(17), 4066–4071. https://doi.org/10.1158/1078-0432.CCR-18-0042

Hoy, S. M. (2018). Talazoparib: First global approval. Drugs, 78(18), 1939–1946. https://doi.org/10.1007/s40265-018-1026-z

Article  PubMed  Google Scholar 

Balasubramaniam, S., Beaver, J. A., Horton, S., Fernandes, L. L., Tang, S., Horne, H. N., Pazdur, R. (2017). FDA approval summary: Rucaparib for the treatment of patients with deleterious BRCA mutation-associated advanced ovarian cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 23(23), 7165–7170. https://doi.org/10.1158/1078-0432.CCR-17-1337

Ray Chaudhuri, A., & Nussenzweig, A. (2017). The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nature Reviews Molecular Cell Biology 2017 18:10, 18(10), 610–621. https://doi.org/10.1038/nrm.2017.53

Kraus, W. L. (2015). PARPs and ADP-Ribosylation: 50 years and counting. Molecular Cell, 58(6), 902–910. https://doi.org/10.1016/J.MOLCEL.2015.06.006

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lan, L., Nakajima, S., Oohata, Y., Takao, M., Okano, S., Masutani, M., Yasui, A. (2004). In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proceedings of the National Academy of Sciences, 101(38), 13738–13743. https://doi.org/10.1073/PNAS.0406048101

Martin-Hernandez, K., Rodriguez-Vargas, J. M., Schreiber, V., & Dantzer, F. (2017). Expanding functions of ADP-ribosylation in the maintenance of genome integrity. Seminars in Cell & Developmental Biology, 63, 92–101. https://doi.org/10.1016/J.SEMCDB.2016.09.009

Article  CAS  Google Scholar 

Luijsterburg, M. S., Lindh, M., Acs, K., Vrouwe, M. G., Pines, A., van Attikum, H., Dantuma, N. P. (2012). DDB2 promotes chromatin decondensation at UV-induced DNA damage. Journal of Cell Biology, 197(2), 267–281. https://doi.org/10.1083/JCB.201106074/VIDEO-1

Pines, A., Vrouwe, M. G., Marteijn, J. A., Typas, D., Luijsterburg, M. S., Cansoy, M., Mullenders, L. (2012). PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. Journal of Cell Biology, 199(2), 235–249. https://doi.org/10.1083/JCB.201112132

Ying, S., Hamdy, F. C., & Helleday, T. (2012). Mre11-dependent degradation of stalled DNA replication forks is prevented by BRCA2 and PARP1. Cancer Research, 72(11), 2814–2821. https://doi.org/10.1158/0008-5472.CAN-11-3417/650068/AM/MRE11-DEPENDENT-DEGRADATION-OF-STALLED-DNA

Article  CAS  PubMed  Google Scholar 

Ying, S., Chen, Z., Medhurst, A. L., Neal, J. A., Bao, Z., Mortusewicz, O., Helleday, T. (2016). DNA-PKcs and PARP1 bind to unresected stalled DNA replication forks where they recruit XRCC1 to mediate repair. Cancer Research, 76(5), 1078–1088. https://doi.org/10.1158/0008-5472.CAN-15-0608/651910/AM/DNA-PKCS-AND-PARP1-BIND-TO-UNRESECTED-STALLED-DNA

Mansour, W. Y., Rhein, T., & Dahm-Daphi, J. (2010). The alternative end-joining pathway for repair of DNA double-strand breaks requires PARP1 but is not dependent upon microhomologies. Nucleic Acids Research, 38(18), 6065–6077. https://doi.org/10.1093/NAR/GKQ387

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vazquez, B. N., Thackray, J. K., Simonet, N. G., Kane‐Goldsmith, N., Martinez‐Redondo, P., Nguyen, T., Serrano, L. (2016). SIRT 7 promotes genome integrity and modulates non‐homologous end joining DNA repair . The EMBO Journal, 35(14), 1488–1503. https://doi.org/10.15252/EMBJ.201593499/SUPPL_FILE/EMBJ201593499-SUP-0003-SDATAFIGEV.ZIP

Yu, G., Xiong, Y., Xu, Z., Zhang, L., Zhou, X. A., Nie, C., Wang, J. (2023). MBD1 protects replication fork stability by recruiting PARP1 and controlling transcription-replication conflicts. Cancer Gene Therapy 2023 31:1, 31(1), 94–107. https://doi.org/10.1038/s41417-023-00685-0

Mosler, T., Baymaz, H. I., Gräf, J. F., Mikicic, I., Blattner, G., Bartlett, E., Beli, P. (2022). PARP1 proximity proteomics reveals interaction partners at stressed replication forks. Nucleic Acids Research, 50(20), 11600. https://doi.org/10.1093/NAR/GKAC948

Petropoulos, M., Karamichali, A., Rossetti, G. G., Freudenmann, A., Iacovino, L. G., Dionellis, V. S., Halazonetis, T. D. (2024). Transcription–replication conflicts underlie sensitivity to PARP inhibitors. Nature, 628(8007), 433. https://doi.org/10.1038/S41586-024-07217-2

Chiappa, M., Guffanti, F., Bertoni, F., Colombo, I., & Damia, G. (2021). Overcoming PARPi resistance: Preclinical and clinical evidence in ovarian cancer. Drug Resistance Updates, 55,. https://doi.org/10.1016/J.DRUP.2021.100744

Article  CAS  PubMed  Google Scholar 

Toh, M. R., & Ngeow, J. (2021). Homologous recombination deficiency: Cancer predispositions and treatment implications. The Oncologist, 26(9), e1526–e1537. https://doi.org/10.1002/ONCO.13829

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li, H., Liu, Z. Y., Wu, N., Chen, Y. C., Cheng, Q., & Wang, J. (2020). PARP inhibitor resistance: The underlying mechanisms and clinical implications. Molecular Cancer 2020 19:1, 19(1), 1–16. https://doi.org/10.1186/S12943-020-01227-0

Tung, N. M., Robson, M. E., Ventz, S., Santa-Maria, C. A., Nanda, R., Marcom, P. K., Garber, J. E. (2020). TBCRC 048: Phase II study of olaparib for metastatic breast cancer and mutations in homologous recombination-related genes. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 38(36), 4274–4282. https://doi.org/10.1200/JCO.20.02151

de Bono, J., Mateo, J., Fizazi, K., Saad, F., Shore, N., Sandhu, S., Hussain, M. (2020). Olaparib for metastatic castration-resistant prostate cancer. The New England journal of medicine, 382(22), 2091–2102. https://doi.org/10.1056/NEJMOA1911440

Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A. J. R., Behjati, S., Biankin, A. V., Stratton, M. R. (2013). Signatures of mutational processes in human cancer. Nature, 500(7463), 415–421. https://doi.org/10.1038/NATURE12477

Coyne, G. O., Karlovich, C., Wilsker, D., Voth, A. R., Parchment, R. E., Chen, A. P., & Doroshow, J. H. (2022). PARP inhibitor applicability: Detailed assays for homologous recombination repair pathway components. OncoTargets and therapy, 15, 165. https://doi.org/10.2147/OTT.S278092

Article  Google Scholar 

Frey, M. K., & Pothuri, B. (2017). Homologous recombination deficiency (HRD) testing in ovarian cancer clinical practice: A review of the literature. Gynecologic oncology research and practice, 4(1). https://doi.org/10.1186/S40661-017-0039-8

Cancer Genome Atlas Research Network. (2011). Integrated genomic analyses of ovarian carcinoma. Nature, 474(7353), 609–615. https://doi.org/10.1038/nature10166

Article  CAS  Google Scholar 

Chen, Y., Salas, L. A., Marotti, J. D., Jenkins, N. P., Cheng, C., Miller, T. W., Christensen, B. C. (2024). Extensive epigenomic dysregulation is a hallmark of homologous recombination deficiency in triple-negative breast cancer. International Journal of Cancer. https://doi.org/10.1002/IJC.35274

Mekonnen, N., Yang, H., & Shin, Y. K. (2022). Homologous recombination deficiency in ovarian, breast, colorecta

留言 (0)

沒有登入
gif