Correlative studies reveal factors contributing to successful CAR-T cell therapies in cancer

Raje, N., Berdeja, J., Lin, Y., Siegel, D., Jagannath, S., Madduri, D., …, Kochenderfer, J. N. (2019). Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. New England Journal of Medicine, 380(18), 1726–1737. https://doi.org/10.1056/nejmoa1817226

Schuster, S. J., Bishop, M. R., Tam, C. S., Waller, E. K., Borchmann, P., McGuirk, J. P., …, Maziarz, R. T. (2019). Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. New England Journal of Medicine, 380(1), 45–56. https://doi.org/10.1056/NEJMOA1804980/SUPPL_FILE/NEJMOA1804980_DISCLOSURES.PDF

Neelapu, S. S., Locke, F. L., Bartlett, N. L., Lekakis, L. J., Miklos, D. B., Jacobson, C. A., …, Go, W. Y. (2017). Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. New England Journal of Medicine, 377(26), 2531–2544. https://doi.org/10.1056/NEJMOA1707447/SUPPL_FILE/NEJMOA1707447_DISCLOSURES.PDF

Lee, D. W., Kochenderfer, J. N., Stetler-Stevenson, M., Cui, Y. K., Delbrook, C., Feldman, S. A., …, Mackall, C. L. (2015). T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: A phase 1 dose-escalation trial. Lancet (London, England), 385(9967), 517. https://doi.org/10.1016/S0140-6736(14)61403-3

Maude, S. L., Laetsch, T. W., Buechner, J., Rives, S., Boyer, M., Bittencourt, H., …, Grupp, S. A. (2018). Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. New England Journal of Medicine, 378(5), 439–448. https://doi.org/10.1056/NEJMOA1709866/SUPPL_FILE/NEJMOA1709866_DISCLOSURES.PDF

Pulsipher, M. A., Han, X., Maude, S. L., Laetsch, T. W., Qayed, M., Rives, S., …, Grupp, S. A. (2022). Next-generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute lymphoblastic leukemia. Blood Cancer Discovery, 3(1), 66–81. https://doi.org/10.1158/2643-3230.BCD-21-0095

Gardner, R. A., Finney, O., Annesley, C., Brakke, H., Summers, C., Leger, K., …, Jensen, M. C. (2017). Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood, 129(25), 3322. https://doi.org/10.1182/BLOOD-2017-02-769208

Kochenderfer, J. N., Somerville, R. P. T., Lu, T., Yang, J. C., Sherry, R. M., Feldman, S. A., …, Rosenberg, S. A. (2017). Long-duration complete remissions of diffuse large B cell lymphoma after anti-CD19 chimeric antigen receptor T cell therapy. Molecular Therapy, 25(10), 2245–2253. https://doi.org/10.1016/j.ymthe.2017.07.004

Park, J. H., Rivière, I., Gonen, M., Wang, X., Sénéchal, B., Curran, K. J., …, Sadelain, M. (2018). Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. New England Journal of Medicine, 378(5), 449–459. https://doi.org/10.1056/NEJMOA1709919/SUPPL_FILE/NEJMOA1709919_DISCLOSURES.PDF

Shalabi, H., Delbrook, C., Stetler-Stevenson, M., Yuan, C., Steinberg, S. M., Yates, B., …, Shah, N. N. (2018). Chimeric antigen receptor T-cell (CAR-T) therapy can render patients with ALL into PCR-negative remission and can be an effective bridge to transplant (HCT). Biology of Blood and Marrow Transplantation, 24(3), S25–S26. https://doi.org/10.1016/j.bbmt.2017.12.018

Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., …, Grupp, S. A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. The New England journal of medicine, 371(16), 1507. https://doi.org/10.1056/NEJMOA1407222

Mount, C. W., & Gonzalez Castro, L. N. (2022). Advances in chimeric antigen receptor (CAR) T-cell therapies for the treatment of primary brain tumors. Antibodies, 11(2). https://doi.org/10.3390/ANTIB11020031

Majzner, R. G., Ramakrishna, S., Yeom, K. W., Patel, S., Chinnasamy, H., Schultz, L. M., …, Monje, M. (2022). GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature, 603(7903), 934–941. https://doi.org/10.1038/s41586-022-04489-4

Cummins, K. D., & Gill, S. (2019). Will CAR T cell therapy have a role in AML? Promises and pitfalls. Seminars in Hematology, 56(2), 155–163. https://doi.org/10.1053/j.seminhematol.2018.08.008

Article  PubMed  Google Scholar 

Feucht, J., Sun, J., Eyquem, J., Ho, Y. J., Zhao, Z., Leibold, J., …, Sadelain, M. (2018). Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nature Medicine 2018 25:1, 25(1), 82–88. https://doi.org/10.1038/S41591-018-0290-5

Hamieh, M., Mansilla-Soto, J., Rivière, I., & Sadelain, M. (2023). Programming CAR T cell tumor recognition: Tuned antigen sensing and logic gating. Cancer Discovery, 13(4), 829. https://doi.org/10.1158/2159-8290.CD-23-0101

Article  CAS  PubMed  PubMed Central  Google Scholar 

Haubner, S., Mansilla-Soto, J., Nataraj, S., Kogel, F., Chang, Q., de Stanchina, E., …, Sadelain, M. (2023). Cooperative CAR targeting to selectively eliminate AML and minimize escape. Cancer Cell, 41(11), 1871–1891.e6. https://doi.org/10.1016/J.CCELL.2023.09.010

Tousley, A. M., Rotiroti, M. C., Labanieh, L., Rysavy, L. W., Kim, W. J., Lareau, C., …, Majzner, R. G. (2023). Co-opting signalling molecules enables logic-gated control of CAR T cells. Nature 2023 615:7952, 615(7952), 507–516. https://doi.org/10.1038/S41586-023-05778-2

Labanieh, L., & Mackall, C. L. (2023). CAR immune cells: Design principles, resistance and the next generation. Nature 2023 614:7949, 614(7949), 635–648. https://doi.org/10.1038/s41586-023-05707-3

Melenhorst, J. J., Chen, G. M., Wang, M., Porter, D. L., Chen, C., Collins, M. K. A., …, June, C. H. (2022). Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature, 602(7897), 503–509. https://doi.org/10.1038/s41586-021-04390-6

Wilson, T. L., Kim, H., Chou, C. H., Langfitt, D., Mettelman, R. C., Minervina, A. A., …, Thomas, P. G. (2022). Common trajectories of highly effective CD19-specific CAR T cells identified by endogenous T-cell receptor lineages. Cancer Discovery, 12(9), 2098–2119. https://doi.org/10.1158/2159-8290.CD-21-1508

Anderson, N. D., Birch, J., Accogli, T., Criado, I., Khabirova, E., Parks, C., …, Ghorashian, S. (2023). Transcriptional signatures associated with persisting CD19 CAR-T cells in children with leukemia. Nature Medicine, 29(7), 1700–1709. https://doi.org/10.1038/s41591-023-02415-3

Yu, X., Harden, K., Gonzalez, L. C., Francesco, M., Chiang, E., Irving, B., …, Grogan, J. L. (2008). The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nature Immunology 2008 10:1, 10(1), 48–57. https://doi.org/10.1038/ni.1674

Good, Z., Spiegel, J. Y., Sahaf, B., Malipatlolla, M. B., Ehlinger, Z. J., Kurra, S., …, Mackall, C. L. (2022). Post-infusion CAR TReg cells identify patients resistant to CD19-CAR therapy. Nature Medicine, 28(9), 1860–1871. https://doi.org/10.1038/s41591-022-01960-7

Haradhvala, N. J., Leick, M. B., Maurer, K., Gohil, S. H., Larson, R. C., Yao, N., …, Maus, M. V. (2022). Distinct cellular dynamics associated with response to CAR-T therapy for refractory B-cell lymphoma. Nature Medicine, 28(9), 1848. https://doi.org/10.1038/S41591-022-01959-0

Seo, H., Chen, J., González-Avalos, E., Samaniego-Castruita, D., Das, A., Wang, Y. H., …, Rao, A. (2019). TOX and TOX2 transcription factors cooperate with NR4A transcription factors to impose CD8+ T cell exhaustion. Proceedings of the National Academy of Sciences of the United States of America, 116(25), 12410–12415. https://doi.org/10.1073/PNAS.1905675116/SUPPL_FILE/PNAS.1905675116.SAPP.PDF

Chen, J., López-Moyado, I. F., Seo, H., Lio, C. W. J., Hempleman, L. J., Sekiya, T., …, Rao, A. (2019). NR4A transcription factors limit CAR T cell function in solid tumours. Nature 2019 567:7749, 567(7749), 530–534. https://doi.org/10.1038/S41586-019-0985-X

Lynn, R. C., Weber, E. W., Sotillo, E., Gennert, D., Xu, P., Good, Z., …, Mackall, C. L. (2019). c-Jun overexpression in CAR T cells induces exhaustion resistance. Nature, 576(7786), 293–300. https://doi.org/10.1038/s41586-019-1805-z

Zhang, X., Zhang, C., Qiao, M., Cheng, C., Tang, N., Lu, S., …, Wang, H. (2022). Depletion of BATF in CAR-T cells enhances antitumor activity by inducing resistance against exhaustion and formation of central memory cells. Cancer Cell, 40(11), 1407–1422.e7. https://doi.org/10.1016/J.CCELL.2022.09.013

McCutcheon, S. R., Swartz, A. M., Brown, M. C., Barrera, A., McRoberts Amador, C., Siklenka, K., …, Gersbach, C. A. (2023). Transcriptional and epigenetic regulators of human CD8+ T cell function identified through orthogonal CRISPR screens. Nature Genetics 2023 55:12, 55(12), 2211–2223. https://doi.org/10.1038/S41588-023-01554-0

Seo, H., González-Avalos, E., Zhang, W., Ramchandani, P., Yang, C., Lio, C. W. J., …, Hogan, P. G. (2021). BATF and IRF4 cooperate to counter exhaustion in tumor-infiltrating CAR T cells. Nature Immunology 2021 22:8, 22(8), 983–995. https://doi.org/10.1038/S41590-021-00964-8

Doan, A. E., Mueller, K. P., Chen, A. Y., Rouin, G. T., Chen, Y., Daniel, B., …, Weber, E. W. (2024). FOXO1 is a master regulator of memory programming in CAR T cells. Nature. https://doi.org/10.1038/s41586-024-07300-8

Tang, J., Sheng, J., Zhang, Q., Ji, Y., Wang, X., Zhang, J., …, Liang, T. (2023). Runx3-overexpression cooperates with ex vivo AKT inhibition to generate receptor-engineered T cells with better persistence, tumor-residency, and antitumor ability. Journal for ImmunoTherapy of Cancer, 11(2), e006119. https://doi.org/10.1136/JITC-2022-006119

Chen, Z., Arai, E., Khan, O., Zhang, Z., Ngiow, S. F., He, Y., …, Shi, J. (2021). In vivo CD8+ T cell CRISPR screening reveals control by Fli1 in infection and cancer. Cell, 184(5), 1262–1280.e22. https://doi.org/10.1016/J.CELL.2021.02.019

Fraietta, J. A., Nobles, C. L., Sammons, M. A., Lundh, S., Carty, S. A., Reich, T. J., …, Melenhorst, J. J. (2018). Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature, 558(7709), 307–312. https://doi.org/10.1038/s41586-018-0178-z

Jain, N., Zhao, Z., Feucht, J., Koche, R., Iyer, A., Dobrin, A., …, Sadelain, M. (2023). TET2 guards against unchecked BATF3-induced CAR T cell expansion. Nature 2023 615:7951, 615(7951), 315–322. https://doi.org/10.1038/S41586-022-05692-Z

Belk, J. A., Yao, W., Ly, N., Freitas, K. A., Chen, Y. T., Shi, Q., …, Satpathy, A. T. (2022). Genome-wide CRISPR screens of T cell exhaustion identify chromatin remodeling factors that limit T cell persistence. Cancer Cell, 40(7), 768–786.e7. https://doi.org/10.1016/j.ccell.2022.06.001

Prinzing, B., Zebley, C. C., Petersen, C. T., Fan, Y., Anido, A. A., Yi, Z., …, Krenciute, G. (2021). Deleting DNMT3A in CAR T cells prevents exhaustion and enhances antitumor activity. Science Translational Medicine, 13(620), eabh0272. https://doi.org/10.1126/SCITRANSLMED.ABH0272

Jain, N., Zhao, Z., Koche, R. P., Antelope, C., Gozlan, Y., Montalbano, A., …, Sadelain, M. (2024). Disruption of SUV39H1-mediated H3K9 methylation sustains CAR t-cell function. Cancer Discovery, 14(1), 142–157. https://doi.org/10.1158/2159-8290.CD-22-1319/729924/AM/DISRUPTION-OF-SUV39H1-MEDIATED-H3K9-METHYLATION

López-Cobo, S., Fuentealba, J. R., Gueguen, P., Bonté, P. E., Tsalkitzi, K., Chacón, I., …, Amigorena, S. (2024). SUV39H1 ablation enhances long-term CAR T function in solid tumors. Cancer Discovery, 14(1), 120–141. https://doi.org/10.1158/2159-8290.CD-22-1350/729925/AM/SUV39H1-ABLATION-ENHANCES-LONG-TERM-CAR-T-FUNCTION

Weber, E. W., Parker, K. R., Sotillo, E., Lynn, R. C., Anbunathan, H., Lattin, J., …, Mackall, C. L. (2021). Transient rest restores functionality in exhausted CAR-T cells through epigenetic remodeling. Science, 372(6537). https://doi.org/10.1126/SCIENCE.ABA1786/SUPPL_FILE/ABA1786_WEBER_SM.PDF

Zhang, H., Hu, Y., Shao, M., Teng, X., Jiang, P., Wang, X., …, Huang, H. (2021). Dasatinib enhances anti-leukemia efficacy of chimeric antigen receptor T cells by inhibiting cell differentiation and exhaustion. Journal of Hematology and Oncology, 14(1), 1–6. https://doi.org/10.1186/S13045-021-01117-Y/FIGURES/2

Mestermann, K., Giavridis, T., Weber, J., Rydzek, J., Frenz, S., Nerreter, T., …, Hudecek, M. (2019). The tyrosine kinase inhibitor dasatinib acts as a pharmacologic on/off switch for CAR-T cells. Science Translational Medicine, 11(499). https://doi.org/10.1126/SCITRANSLMED.AAU5907

Xu, Y., Zhang, M., Ramos, C. A., Durett, A., Liu, E., Dakhova, O., …, Dotti, G. (2014). Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood, 123(24), 3750–3759. https://doi.org/10.1182/blood-2014-01-552174

Bell, M., & Gottschalk, S. (2021). Engineered cytokine signaling to improve CAR T cell effector function. Frontiers in Immunology, 12, 684642. https://doi.org/10.3389/FIMMU.2021.684642/BIBTEX

Article  CAS  PubMed  PubMed Central  Google Scholar 

Markley, J. C., & Sadelain, M. (2010). IL-7 and IL-21 are superior to IL-2 and IL-15 in promoting human T cell–mediated rejection of systemic lymphoma in immunodeficient mice. Blood, 115(17), 3508–3519. https://doi.org/10.1182/BLOOD-2009-09-241398

Article  CAS  PubMed  PubMed Central  Google Scholar 

Del Galy, A. S., Menegatti, S., Fuentealba, J., Lucibello, F., Perrin, L., Helft, J., …, Menger, L. (2021). In vivo genome-wide CRISPR screens identify SOCS1 as intrinsic checkpoint of CD4+T H 1 cell response. Science Immunology, 6(66), 8219. https://doi.org/10.1126/SCIIMMUNOL.ABE8219/SUPPL_FILE/SCIIMMUNOL.ABE8219_TABLES_S1_TO_S5.ZIP

Wenes, M., Jaccard, A., Wyss, T., Maldonado-Pérez, N., Teoh, S. T., Lepez, A., …, Romero, P. (2022). The mitochondrial pyruvate carrier regulates memory T cell differentiation and antitumor function. Cell Metabolism, 34(5), 731–746.e9. https://doi.org/10.1016/j.cmet.2022.03.013

Jaccard, A., Wyss, T., Maldonado-Pérez, N., Rath, J. A., Bevilacqua, A., Peng, J. J., …, Wenes, M. (2023). Reductive carboxylation epigenetically instructs T cell differentiation. Nature 2023 621:7980, 621(7980), 849–856. https://doi.org/10.1038/S41586-023-06546-Y

Si, X., Shao, M., Teng, X., Huang, Y., Meng, Y., Wu, L., …, Huang, H. (2024). Mitochondrial isocitrate dehydrogenase impedes CAR T cell function by restraining antioxidant metabolism and histone acetylation. Cell Metabolism, 36(1), 176–192.e10. https://doi.org/10.1016/J.CMET.2023.12.010/ATTACHMENT/92E3FA39-8112-4573-A1F5-8D938B787C95/MMC3.PDF

Klysz, D. D., Fowler, C., Malipatlolla, M., Stuani, L., Freitas, K. A., Chen, Y., …, Mackall, C. L. (2024). Inosine induces stemness features in CAR-T cells and enhances potency. Cancer Cell, 42(2), 266–282.e8. https://doi.org/10.1016/j.ccell.2024.01.002

Linnemann, C., Schildberg, F. A., Schurich, A., Diehl, L., Hegenbarth, S. I., Endl, E., …, Knolle, P. A. (2009). Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling. Immunology, 128(1pt2), e728–e737. https://doi.org/10.1111/J.1365-2567.2009.03075.X

Vormittag, P., Gunn, R., Ghorashian, S., & Veraitch, F. S. (2018). A guide to manufacturing CAR T cell therapies. Current Opinion in Biotechnology, 53, 164–181. https://doi.org/10.1016/J.COPBIO.2018.01.025

Article  CAS  PubMed  Google Scholar 

Ghassemi, S., Nunez-Cruz, S., O’Connor, R. S., Fraietta, J. A., Patel, P. R., Scholler, J., …, Milone, M. C. (2018). Reducing ex vivo culture improves the antileukemic activity of chimeric antigen receptor (CAR) T cells. Cancer Immunology Research, 6(9), 1100–1109. https://doi.org/10.1158/2326-6066.CIR-17-0405/470662/AM/REDUCING-EX-VIVO-CULTURE-IMPROVES-THE-ANTI

Laetsch, T. W., Maude, S. L., Rives, S., Hiramatsu, H., Bittencourt, H., Bader, P., …, Grupp, S. A. (2023). Three-year update of tisagenlecleucel in pediatric and young adult patients with relapsed/refractory acute lymphoblastic leukemia in the ELIANA trial. Journal of Clinical Oncology, 41(9), 1664. https://doi.org/10.1200/JCO.22.00642

Fry, T. J., Shah, N. N., Orentas, R. J., Stetler-Stevenson, M., Yuan, C. M., Ramakrishna, S., …, Mackall, C. L. (2018). CD22-CAR T cells induce remissions in CD19-CAR naïve and resistant B-ALL. Nature medicine, 24(1), 20. https://doi.org/10.1038/NM.4441

Faruqi, A. J., Ligon, J. A., Borgman, P., Steinberg, S. M., Foley, T., Little, L., …, Shah, N. N. (2022). The impact of race, ethnicity, and obesity on CAR T-cell therapy outcomes. Blood Advances, 6(23), 6040–6050. https://doi.org/10.1182/BLOODADVANCES.2022007676

Lamble, A. J., Myers, R. M., Taraseviciute, A., John, S., Yates, B., Steinberg, S. M., …, Shah, N. N. (2023). Preinfusion factors impacting relapse immunophenotype following CD19 CAR T cells. Blood Advances, 7(4), 575–585. https://doi.org/10.1182/BLOODADVANCES.2022007423

Majzner, R. G., & Mackall, C. L. (2019). Clinical lessons learned from the first leg of the CAR T cell journey. Nature Medicine, 25(9), 1341–1355. https://doi.org/10.1038/s41591-019-0564-6

Article  CAS  PubMed  Google Scholar 

Schultz, L. M., Baggott, C., Prabhu, S., Pacenta, H. L., Phillips, C. L., Rossoff, J., …, Laetsch, T. W. (2022). Disease burden affects outcomes in pediatric and young adult B-cell lymphoblastic leukemia after commercial tisagenlecleucel: A pediatric real-world chimeric antigen receptor consortium report. Journal of Clinical Oncology, 40(9), 945. https://doi.org/10.1200/JCO.20.03585

Pulsipher, M. A., Han, X., Maude, S. L., Laetsch, T. W., Qayed, M., Rives, S., …, Grupp, S. A. (2022). Next-generation sequencing of minimal residual disease for predicting relapse after tisagenlecleucel in children and young adults with acute lymphoblastic leukemia. Blood Cancer Discovery, 3(1), 66–81. https://doi.org/10.1158/2643-3230.BCD-21-0095/674665/P/NEXT-GENERATION-SEQUENCING-OF-MINIMAL-RESIDUAL

Myers, R. M., Taraseviciute, A., Steinberg, S. M., Lamble, A. J., Sheppard, J., Yates, B., …, Shah, N. N. (2022). Blinatumomab nonresponse and high-disease burden are associated with inferior outcomes after CD19-CAR for B-ALL. Journal of Clinical Oncology, 40(9), 932. https://doi.org/10.1200/JCO.21.01405

Dourthe, M. E., Rabian, F., Yakouben, K., Chevillon, F., Cabannes-Hamy, A., Méchinaud, F., …, Baruchel, A. (2021). Determinants of CD19-positive vs CD19-negative relapse after tisagenlecleucel for B-cell acute lymphoblastic leukemia. Leukemia 2021 35:12, 35(12), 3383–3393. https://doi.org/10.1038/s41375-021-01281-7

Turtle, C. J., Hanafi, L. A., Berger, C., Gooley, T. A., Cherian, S., Hudecek, M., …, Maloney, D. G. (2016). CD19 CAR–T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. The Journal of Clinical Investigation, 126(6), 2123. https://doi.org/10.1172/JCI85309

Holland, E. M., Molina, J. C., Dede, K., Moyer, D., Zhou, T., Yuan, C. M., …, Shah, N. (2022). Efficacy of second CAR-T (CART2) infusion limited by poor CART expansion and antigen modulation. Journal for Immunotherapy of Cancer, 10, 4483. https://doi.org/10.1136/jitc-2021-004483

Turtle, C. J., Hanafi, L. A., Berger, C., Hudecek, M., Pender, B., Robinson, E., …, Maloney, D. G. (2016). Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Science Translational Medicine, 8(355). https://doi.org/10.1126/SCITRANSLMED.AAF8621/SUPPL_FILE/8-355RA116_SM.PDF

Mejstríková, E., Hrusak, O., Borowitz, M. J., Whitlock, J. A., Brethon, B., Trippett, T. M., …, Locatelli, F. (2017). CD19-negative relapse of pediatric B-cell precursor acute lymphoblastic leukemia following blinatumomab treatment. Blood Cancer Journal, 7(12), 659. https://doi.org/10.1038/S41408-017-0023-X

Bhojwani, D., Sposto, R., Shah, N. N., Rodriguez, V., Yuan, C., Stetler-Stevenson, M., …, Rheingold, S. R. (2019). Inotuzumab ozogamicin in pediatric patients with relapsed/refractory acute lymphoblastic leukemia. Leukemia, 33(4), 884. https://doi.org/10.1038/S41375-018-0265-Z

Sotillo, E., Barrett, D. M., Black, K. L., Bagashev, A., Oldridge, D., Wu, G., …, Thomas-Tikhonenko, A. (2015). Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discovery, 5(12), 1282–1295. https://doi.org/10.1158/2159-8290.CD-15-1020/43172/P/CONVERGENCE-OF-ACQUIRED-MUTATIONS-AND-ALTERNATIVE

Asnani, M., Hayer, K. E., Naqvi, A. S., Zheng, S., Yang, S. Y., Oldridge, D., …, Thomas-Tikhonenko, A. (2019). Retention of CD19 intron 2 contributes to CART-19 resistance in leukemias with subclonal frameshift mutations in CD19. Leukemia 2019 34:4, 34(4), 1202–1207. https://doi.org/10.1038/s41375-019-0580-z

Fischer, J., Paret, C., El Malki, K., Alt, F., Wingerter, A., Neu, M. A., …, Faber, J. (2017). CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. Journal of Immunotherapy (Hagerstown, Md. : 1997), 40(5), 187. https://doi.org/10.1097/CJI.0000000000000169

Bagashev, A., Sotillo, E., Tang, C.-H. A., Black, K. L., Perazzelli, J., Seeholzer, S. H., …, Thomas-Tikhonenko, A. (2018). CD19 alterations emerging after CD19-directed immunotherapy cause retention of the misfolded protein in the endoplasmic reticulum. Molecular and Cellular Biology, 38(21). https://doi.org/10.1128/MCB.00383-18

Orlando, E. J., Han, X., Tribouley, C., Wood, P. A., Leary, R. J., Riester, M., …, Winckler, W. (2018). Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nature Medicine 2018 24:10, 24(10), 1504–1506. https://doi.org/10.1038/s41591-018-0146-z

Ghobadi, A., Landmann, J. H., Carter, A., Cooper, M. L., Selli, M. E., Chang, J., …, Singh, N. (2022). Discovery of a novel genomic alteration that renders leukemic cells resistant to CD19-targeted immunotherapies. Blood Advances, 6(20), 5634–5640. https://doi.org/10.1182/BLOODADVANCES.2022007705

Fischer, J., Paret, C., El Malki, K., Alt, F., Wingerter, A., Neu, M. A., …, Faber, J. (2017). CD19 isoforms enabling resistance to CART-19 immunotherapy are expressed in B-ALL patients at initial diagnosis. Journal of Immunotherapy, 40(5), 187–195. https://doi.org/10.1097/CJI.0000000000000169

Rabilloud, T., Potier, D., Pankaew, S., Nozais, M., Loosveld, M., & Payet-Bornet, D. (2021). S

留言 (0)

沒有登入
gif