TRIM-endous functional network of tripartite motif 29 (TRIM29) in cancer progression and beyond

Song, L., & Luo, Z. Q. (2019). Post-translational regulation of ubiquitin signaling. Journal of Cell Biology, 218(6), 1776–1786. https://doi.org/10.1083/jcb.201902074

Article  CAS  PubMed  PubMed Central  Google Scholar 

Borden, K. L. (1998). RING fingers and B-boxes: Zinc-binding protein-protein interaction domains. Biochemistry and Cell Biology, 76(2–3), 351–358. https://doi.org/10.1139/bcb-76-2-3-351

Article  CAS  PubMed  Google Scholar 

Reddy, B. A., Etkin, L. D., & Freemont, P. S. (1992). A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends in Biochemical Sciences, 17(9), 344–345. https://doi.org/10.1016/0968-0004(92)90308-v

Article  CAS  PubMed  Google Scholar 

Reymond, A., Meroni, G., Fantozzi, A., Merla, G., Cairo, S., Luzi, L., et al. (2001). The tripartite motif family identifies cell compartments. Embo Journal, 20(9), 2140–2151. https://doi.org/10.1093/emboj/20.9.2140

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hatakeyama, S. (2011). TRIM proteins and cancer. Nature Reviews Cancer, 11(11), 792–804. https://doi.org/10.1038/nrc3139

Article  CAS  PubMed  Google Scholar 

Kumar, S., Chauhan, S., Jain, A., Ponpuak, M., Choi, S. W., Mudd, M., et al. (2017). Galectins and TRIMs directly interact and orchestrate autophagic response to endomembrane damage. Autophagy, 13(6), 1086–1087. https://doi.org/10.1080/15548627.2017.1307487

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mandell, M. A., Saha, B., & Thompson, T. A. (2020). The tripartite Nexus: Autophagy, cancer, and tripartite motif-containing protein family members. Frontiers in Pharmacology, 11,. https://doi.org/10.3389/fphar.2020.00308

Article  CAS  PubMed  PubMed Central  Google Scholar 

Connacher, R. P., & Goldstrohm, A. C. (2021). Molecular and biological functions of TRIM-NHL RNA-binding proteins. Wiley Interdiscip Rev RNA, 12(2). https://doi.org/10.1002/wrna.1620

Article  CAS  PubMed  Google Scholar 

Venuto, S., & Merla, G. (2019). E3 ubiquitin ligase TRIM proteins, cell cycle and mitosis. Cells, 8(5). https://doi.org/10.3390/cells8050510

Article  CAS  PubMed  PubMed Central  Google Scholar 

McAvera, R. M., & Crawford, L. J. (2020). TIF1 Proteins in Genome Stability and Cancer. Cancers (Basel), 12(8). https://doi.org/10.3390/cancers12082094

Chauhan, S., Jena, K. K., Mehto, S., Chauhan, N. R., Sahu, R., Dhar, K., et al. (2022). Innate immunity and inflammophagy: Balancing the defence and immune homeostasis. Febs j, 289(14), 4112–4131. https://doi.org/10.1111/febs.16298

Article  CAS  PubMed  Google Scholar 

Kimura, T., Jain, A., Choi, S. W., Mandell, M. A., Johansen, T., & Deretic, V. (2017). TRIM-directed selective autophagy regulates immune activation. Autophagy, 13(5), 989–990. https://doi.org/10.1080/15548627.2016.1154254

Article  CAS  PubMed  Google Scholar 

Patil, G., & Li, S. (2019). Tripartite motif proteins: An emerging antiviral protein family. Future Virol, 14(2), 107–122. https://doi.org/10.2217/fvl-2018-0161

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang, N., Sun, X., Li, P., Liu, X., Zhang, X., Chen, Q., et al. (2022). TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Experimental Hematology & Oncology, 11(1), 75. https://doi.org/10.1186/s40164-022-00322-w

Article  CAS  Google Scholar 

Ozato, K., Shin, D. M., Chang, T. H., & Morse, H. C., 3. (2008). TRIM family proteins and their emerging roles in innate immunity. Nature Reviews Immunology, 8(11), 849–860. https://doi.org/10.1038/nri2413

Article  CAS  PubMed  PubMed Central  Google Scholar 

Meroni, G., & Diez-Roux, G. (2005). TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays, 27(11), 1147–1157. https://doi.org/10.1002/bies.20304

Article  CAS  PubMed  Google Scholar 

Cambiaghi, V., Giuliani, V., Lombardi, S., Marinelli, C., Toffalorio, F., & Pelicci, P. G. (2012). TRIM proteins in cancer. Advances in Experimental Medicine and Biology, 770, 77–91. https://doi.org/10.1007/978-1-4614-5398-7_6

Article  CAS  PubMed  Google Scholar 

Mohammadi, A., Pour Abbasi, M. S., Khorrami, S., Khodamoradi, S., Mohammadi Goldar, Z., & Ebrahimzadeh, F. (2022). The TRIM proteins in cancer: From expression to emerging regulatory mechanisms. Clinical and Translational Oncology, 24(3), 460–470. https://doi.org/10.1007/s12094-021-02715-5

Article  CAS  PubMed  Google Scholar 

Tsai, W. W., Wang, Z., Yiu, T. T., Akdemir, K. C., Xia, W., Winter, S., et al. (2010). TRIM24 links a non-canonical histone signature to breast cancer. Nature, 468(7326), 927–932.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chambon, M., Orsetti, B., Berthe, M. L., Bascoul-Mollevi, C., Rodriguez, C., Duong, V., et al. (2011). Prognostic significance of TRIM24/TIF-1α gene expression in breast cancer. American Journal of Pathology, 178(4), 1461–1469. https://doi.org/10.1016/j.ajpath.2010.12.026

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki, T., Urano, T., Tsukui, T., Horie-Inoue, K., Moriya, T., Ishida, T., et al. (2005). Estrogen-responsive finger protein as a new potential biomarker for breast cancer. Clinical Cancer Research, 11(17), 6148–6154. https://doi.org/10.1158/1078-0432.Ccr-05-0040

Article  CAS  PubMed  Google Scholar 

Wong, N., Lai, P., Lee, S. W., Fan, S., Pang, E., Liew, C. T., et al. (1999). Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: Relationship to disease stage, tumor size, and cirrhosis. American Journal of Pathology, 154(1), 37–43. https://doi.org/10.1016/s0002-9440(10)65248-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Han, Y., Tan, Y., Zhao, Y., Zhang, Y., He, X., Yu, L., et al. (2020). TRIM23 overexpression is a poor prognostic factor and contributes to carcinogenesis in colorectal cancer. Journal of Cellular and Molecular Medicine, 24(10), 5491–5500. https://doi.org/10.1111/jcmm.15203

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu, W., Chen, J., Wu, J., Lin, J., Yang, S., & Yu, H. (2017). Knockdown of tripartite motif-59 inhibits the malignant processes in human colorectal cancer cells. Oncology Reports, 38(4), 2480–2488. https://doi.org/10.3892/or.2017.5896

Article  CAS  PubMed  Google Scholar 

Murnane, J. P., & Kapp, L. N. (1993). A critical look at the association of human genetic syndromes with sensitivity to ionizing radiation. Seminars in Cancer Biology, 4(2), 93–104.

CAS  PubMed  Google Scholar 

Brzoska, P. M., Chen, H., Zhu, Y., Levin, N. A., Disatnik, M. H., Mochly-Rosen, D., et al. (1995). The product of the ataxia-telangiectasia group D complementing gene, ATDC, interacts with a protein kinase C substrate and inhibitor. The Proceedings of the National Academy of Sciences , 92(17), 7824–7828. https://doi.org/10.1073/pnas.92.17.7824

Article  CAS  Google Scholar 

Murnane, J. P., Zhu, Y., Young, B. R., & Christman, M. F. (1994). Expression of the candidate A-T gene ATDC is not detectable in a human cell line with a normal response to ionizing radiation. International Journal of Radiation Biology, 66(6 Suppl), 77–84.

Article  Google Scholar 

Wikiniyadhanee, R., Lerksuthirat, T., Stitchantrakul, W., Chitphuk, S., & Dejsuphong, D. (2017). AB064. TRIM29: A novel gene involved in DNA repair mechanisms. Annals of Translational Medicine, AB064.

Dükel, M., Streitfeld, W. S., Tang, T. C., Backman, L. R., Ai, L., May, W. S., et al. (2016). The breast Cancer tumor suppressor TRIM29 is expressed via ATM-dependent signaling in response to Hypoxia. Journal of Biological Chemistry, 291(41), 21541–21552. https://doi.org/10.1074/jbc.M116.730960

Article 

留言 (0)

沒有登入
gif