Song, L., & Luo, Z. Q. (2019). Post-translational regulation of ubiquitin signaling. Journal of Cell Biology, 218(6), 1776–1786. https://doi.org/10.1083/jcb.201902074
Article CAS PubMed PubMed Central Google Scholar
Borden, K. L. (1998). RING fingers and B-boxes: Zinc-binding protein-protein interaction domains. Biochemistry and Cell Biology, 76(2–3), 351–358. https://doi.org/10.1139/bcb-76-2-3-351
Article CAS PubMed Google Scholar
Reddy, B. A., Etkin, L. D., & Freemont, P. S. (1992). A novel zinc finger coiled-coil domain in a family of nuclear proteins. Trends in Biochemical Sciences, 17(9), 344–345. https://doi.org/10.1016/0968-0004(92)90308-v
Article CAS PubMed Google Scholar
Reymond, A., Meroni, G., Fantozzi, A., Merla, G., Cairo, S., Luzi, L., et al. (2001). The tripartite motif family identifies cell compartments. Embo Journal, 20(9), 2140–2151. https://doi.org/10.1093/emboj/20.9.2140
Article CAS PubMed PubMed Central Google Scholar
Hatakeyama, S. (2011). TRIM proteins and cancer. Nature Reviews Cancer, 11(11), 792–804. https://doi.org/10.1038/nrc3139
Article CAS PubMed Google Scholar
Kumar, S., Chauhan, S., Jain, A., Ponpuak, M., Choi, S. W., Mudd, M., et al. (2017). Galectins and TRIMs directly interact and orchestrate autophagic response to endomembrane damage. Autophagy, 13(6), 1086–1087. https://doi.org/10.1080/15548627.2017.1307487
Article CAS PubMed PubMed Central Google Scholar
Mandell, M. A., Saha, B., & Thompson, T. A. (2020). The tripartite Nexus: Autophagy, cancer, and tripartite motif-containing protein family members. Frontiers in Pharmacology, 11,. https://doi.org/10.3389/fphar.2020.00308
Article CAS PubMed PubMed Central Google Scholar
Connacher, R. P., & Goldstrohm, A. C. (2021). Molecular and biological functions of TRIM-NHL RNA-binding proteins. Wiley Interdiscip Rev RNA, 12(2). https://doi.org/10.1002/wrna.1620
Article CAS PubMed Google Scholar
Venuto, S., & Merla, G. (2019). E3 ubiquitin ligase TRIM proteins, cell cycle and mitosis. Cells, 8(5). https://doi.org/10.3390/cells8050510
Article CAS PubMed PubMed Central Google Scholar
McAvera, R. M., & Crawford, L. J. (2020). TIF1 Proteins in Genome Stability and Cancer. Cancers (Basel), 12(8). https://doi.org/10.3390/cancers12082094
Chauhan, S., Jena, K. K., Mehto, S., Chauhan, N. R., Sahu, R., Dhar, K., et al. (2022). Innate immunity and inflammophagy: Balancing the defence and immune homeostasis. Febs j, 289(14), 4112–4131. https://doi.org/10.1111/febs.16298
Article CAS PubMed Google Scholar
Kimura, T., Jain, A., Choi, S. W., Mandell, M. A., Johansen, T., & Deretic, V. (2017). TRIM-directed selective autophagy regulates immune activation. Autophagy, 13(5), 989–990. https://doi.org/10.1080/15548627.2016.1154254
Article CAS PubMed Google Scholar
Patil, G., & Li, S. (2019). Tripartite motif proteins: An emerging antiviral protein family. Future Virol, 14(2), 107–122. https://doi.org/10.2217/fvl-2018-0161
Article CAS PubMed PubMed Central Google Scholar
Huang, N., Sun, X., Li, P., Liu, X., Zhang, X., Chen, Q., et al. (2022). TRIM family contribute to tumorigenesis, cancer development, and drug resistance. Experimental Hematology & Oncology, 11(1), 75. https://doi.org/10.1186/s40164-022-00322-w
Ozato, K., Shin, D. M., Chang, T. H., & Morse, H. C., 3. (2008). TRIM family proteins and their emerging roles in innate immunity. Nature Reviews Immunology, 8(11), 849–860. https://doi.org/10.1038/nri2413
Article CAS PubMed PubMed Central Google Scholar
Meroni, G., & Diez-Roux, G. (2005). TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. Bioessays, 27(11), 1147–1157. https://doi.org/10.1002/bies.20304
Article CAS PubMed Google Scholar
Cambiaghi, V., Giuliani, V., Lombardi, S., Marinelli, C., Toffalorio, F., & Pelicci, P. G. (2012). TRIM proteins in cancer. Advances in Experimental Medicine and Biology, 770, 77–91. https://doi.org/10.1007/978-1-4614-5398-7_6
Article CAS PubMed Google Scholar
Mohammadi, A., Pour Abbasi, M. S., Khorrami, S., Khodamoradi, S., Mohammadi Goldar, Z., & Ebrahimzadeh, F. (2022). The TRIM proteins in cancer: From expression to emerging regulatory mechanisms. Clinical and Translational Oncology, 24(3), 460–470. https://doi.org/10.1007/s12094-021-02715-5
Article CAS PubMed Google Scholar
Tsai, W. W., Wang, Z., Yiu, T. T., Akdemir, K. C., Xia, W., Winter, S., et al. (2010). TRIM24 links a non-canonical histone signature to breast cancer. Nature, 468(7326), 927–932.
Article CAS PubMed PubMed Central Google Scholar
Chambon, M., Orsetti, B., Berthe, M. L., Bascoul-Mollevi, C., Rodriguez, C., Duong, V., et al. (2011). Prognostic significance of TRIM24/TIF-1α gene expression in breast cancer. American Journal of Pathology, 178(4), 1461–1469. https://doi.org/10.1016/j.ajpath.2010.12.026
Article CAS PubMed PubMed Central Google Scholar
Suzuki, T., Urano, T., Tsukui, T., Horie-Inoue, K., Moriya, T., Ishida, T., et al. (2005). Estrogen-responsive finger protein as a new potential biomarker for breast cancer. Clinical Cancer Research, 11(17), 6148–6154. https://doi.org/10.1158/1078-0432.Ccr-05-0040
Article CAS PubMed Google Scholar
Wong, N., Lai, P., Lee, S. W., Fan, S., Pang, E., Liew, C. T., et al. (1999). Assessment of genetic changes in hepatocellular carcinoma by comparative genomic hybridization analysis: Relationship to disease stage, tumor size, and cirrhosis. American Journal of Pathology, 154(1), 37–43. https://doi.org/10.1016/s0002-9440(10)65248-0
Article CAS PubMed PubMed Central Google Scholar
Han, Y., Tan, Y., Zhao, Y., Zhang, Y., He, X., Yu, L., et al. (2020). TRIM23 overexpression is a poor prognostic factor and contributes to carcinogenesis in colorectal cancer. Journal of Cellular and Molecular Medicine, 24(10), 5491–5500. https://doi.org/10.1111/jcmm.15203
Article CAS PubMed PubMed Central Google Scholar
Wu, W., Chen, J., Wu, J., Lin, J., Yang, S., & Yu, H. (2017). Knockdown of tripartite motif-59 inhibits the malignant processes in human colorectal cancer cells. Oncology Reports, 38(4), 2480–2488. https://doi.org/10.3892/or.2017.5896
Article CAS PubMed Google Scholar
Murnane, J. P., & Kapp, L. N. (1993). A critical look at the association of human genetic syndromes with sensitivity to ionizing radiation. Seminars in Cancer Biology, 4(2), 93–104.
Brzoska, P. M., Chen, H., Zhu, Y., Levin, N. A., Disatnik, M. H., Mochly-Rosen, D., et al. (1995). The product of the ataxia-telangiectasia group D complementing gene, ATDC, interacts with a protein kinase C substrate and inhibitor. The Proceedings of the National Academy of Sciences , 92(17), 7824–7828. https://doi.org/10.1073/pnas.92.17.7824
Murnane, J. P., Zhu, Y., Young, B. R., & Christman, M. F. (1994). Expression of the candidate A-T gene ATDC is not detectable in a human cell line with a normal response to ionizing radiation. International Journal of Radiation Biology, 66(6 Suppl), 77–84.
Wikiniyadhanee, R., Lerksuthirat, T., Stitchantrakul, W., Chitphuk, S., & Dejsuphong, D. (2017). AB064. TRIM29: A novel gene involved in DNA repair mechanisms. Annals of Translational Medicine, AB064.
Dükel, M., Streitfeld, W. S., Tang, T. C., Backman, L. R., Ai, L., May, W. S., et al. (2016). The breast Cancer tumor suppressor TRIM29 is expressed via ATM-dependent signaling in response to Hypoxia. Journal of Biological Chemistry, 291(41), 21541–21552. https://doi.org/10.1074/jbc.M116.730960
留言 (0)