Burza W, Malepszy S (1995) Direct plant regeneration from leaf explants in cucumber (Cucumis sativus L.) is free of stable genetic variation. Plant Breed 114:341–345
Cary AJ, Che P, Howell SH (2002) Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J 32:867–877
Challa KR, Rath M, Nath U (2019) The CIN-TCP transcription factors promote commitment to differentiation in Arabidopsis leaf pavement cells via both auxin-dependent and independent pathways. PLoS Genet 15:e1007988
Article PubMed PubMed Central Google Scholar
Che P, Lall S, Howell SH (2007) Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226:1183–1194
Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637
Article PubMed PubMed Central Google Scholar
Che P, Wu E, Simon MK, Anand A, Lowe K, Gao H, Sigmund AL, Yang M, Albertsen MC, Gordon-Kamm W, Jones TJ (2022) Wuschel2 enables highly efficient CRISPR/Cas-targeted genome editing during rapid de novo shoot regeneration in sorghum. Commun Biol 5:344
Article PubMed PubMed Central Google Scholar
Chen C, Hu Y, Ikeuchi M et al (2024) Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. Sci China Life Sci 67:1338–1367
Del Valle-Echevarria AR, Kiełkowska A, Bartoszewski G, Havey MJ (2015) The mosaic mutants of cucumber: a method to produce knock-downs of mitochondrial transcripts. G3:Genes Genom Genet (Bethesda) 5:1211–1221
Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS (2011) De novo shoot organogenesis: from art to science. Trends Plant Sci 16:597–606
Evans DA, Sharp WR, Flick CE (1981) Growth and behavior of cell cultures: embryogenesis and organogenesis. In: Thorpe TA (ed) Plant tissue culture: methods and applications in agriculture. Academic Press, New York, USA, pp 45–113
Fan M, Xu C, Xu K, Hu Y (2012) Lateral organ boundaries domain transcription factors direct callus formation in Arabidopsis regeneration. Cell Res 22:1169–1180
Article PubMed PubMed Central Google Scholar
Feng S, Zhang J, Mu Z, Wang Y, Wen C, Wu T, Yu C, Li Z, Wang H (2020) Recent progress on the molecular breeding of Cucumis sativus L. in China. Theor Appl Genet 133:1777–1790
Filipecki MK, Sommer H, Malepszy S (1997) The MADS-box gene CUS1 is expressed during cucumber somatic embryogenesis. Plant Sci 125:63–74
Gałązka J, Słomnicka R, Góral-Radziszewska K, Niemirowicz-Szczytt K (2015) From pollination to DH lines verification and optimization of protocol for production of doubled haploids in cucumber. Acta Sci Pol Hortorum Cultus 14:81–92
Gordon SP, Heisler MG, Reddy GV, Ohno C, Das P, Meyerowitz EM (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548
Grabowska A, Wisniewska A, Tagashira N, Malepszy S, Filipecki M (2009) Characterization of CsSEF1 gene encoding putative CCCH-type zinc finger protein expressed during cucumber somatic embryogenesis. J Plant Physiol 166:310–323
Grumet R, Lin Y-C, Rett-Cadman S, Malik A (2023) Morphological and genetic diversity of cucumber (Cucumis sativus L.) fruit development. Plants 12:23
Gu R, Song X, Liu X, Yan L, Zhou Z, Zhang X (2020) Genome-wide analysis of CsWOX transcription factor gene family in cucumber (Cucumis sativus L.). Sci Rep 10:6216
Article PubMed PubMed Central Google Scholar
Gutierrez L, Bussell JD, Păcurar DI, Schwambach J, Păcurar M, Bellini C (2009) Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21:3119–3132
Article PubMed PubMed Central Google Scholar
Holz S, Kube M, Bartoszewski G, Huettel B, Büttner C (2019) Initial studies on cucumber transcriptome analysis under silicon treatment. Silicon 11:2365–2369
Ikeuchi M, Favero DS, Sakamoto Y, Iwase A, Coleman D, Rymen B, Sugimoto (2019) Molecular mechanisms of plant regeneration. Annu Rev Plant Biol 70:377–406
Kyo M, Maida K, Nishioka Y, Matsui K (2018) Coexpression of WUSCHEL related homeobox (WOX) 2 with WOX8 or WOX9 promotes regeneration from leaf segments and free cells in Nicotiana tabacum L. Plant Biotechnol 35:23–30
Lee HW, Cho C, Pandey SK, Park Y, Kim MJ, Kim J (2019) LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. BMC Plant Biol 19:46
Article PubMed PubMed Central Google Scholar
Lee K, Wang K (2023) Strategies for genotype-flexible plant transformation. Curr Opin in Biotechnol 79:102848
Lian Z, Nguyen CD, Liu L, Wang G, Chen J, Wang S, Yi G, Wilson S, Ozias-Akins P, Gong H, Huo H (2022) Application of developmental regulators to improve in planta or in vitro transformation in plants. Plant Biotechnol J 20:1622–1635
Article PubMed PubMed Central Google Scholar
Liu XF, Chen JC, Zhang XL (2021) Genetic regulation of shoot architecture in cucumber. Hortic Res 8:143
Article PubMed PubMed Central Google Scholar
Luo H, Zhang H, Wang H (2023) Advance in sex differentiation in cucumber. Front Plant Sci 14:1186904
Article PubMed PubMed Central Google Scholar
Maher MF, Nasti RA, Vollbrecht M, Starker CG, Clark MD, Voytas DF (2020) Plant gene editing through de novo induction of meristems. Nat Biotechnol 38:84–89
Malinowski R, Filipecki M, Tagashira N, Wiśniewska A, Gaj P, Pląder W, Malepszy S (2004) Xyloglucan endotransglucosylase/hydrolase genes in cucumber (Cucumis sativus L.) – differential expression during somatic embryogenesis. Physiol Plant 120:678–685
Mróz TL, Ziółkowska A, Gawroński P, Pióro-Jabrucka E, Kacprzak S, Mazur M, Malepszy S, Bartoszewski G (2015) Transgenic cucumber lines expressing the chimeric pGT::Dhn24 gene do not show enhanced chilling tolerance in phytotron conditions. Plant Breed 134:468–476
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497
Nadolska-Orczyk A, Malepszy S (1989) In vitro culture of Cucumis sativus L. 7. Genes controlling plant regeneration. Theor Appl Genet 78:836–840
Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130
Article PubMed PubMed Central Google Scholar
Osipowski P, Pawełkowicz M, Wojcieszek M, Skarzyńska A, Przybecki Z, Pląder W (2020) A high-quality cucumber genome assembly enhances computational comparative genomics. Mol Genet Genomics 295:177–193
Park HS, Lee WK, Lee SC, Lee HO, Joh HJ, Park JY, Kim S, Song K, Yang TJ (2021) Inheritance of chloroplast and mitochondrial genomes in cucumber revealed by four reciprocal F1 hybrid combinations. Sci Rep 11:2506
Article PubMed PubMed Central Google Scholar
Qiao M, Xiang F (2013) A set of Arabidopsis thaliana miRNAs involve shoot regeneration in vitro. Plant Signal Behav 8:3
Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K (2007) Conserved factors regulate signaling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811–814
留言 (0)