Effect of miR-10a on the proliferation and differentiation of yak adipocyte precursors

Armenise C, Lefebvre G, Carayol J, Bonnel S, Bolton J, Di Cara A., . . . Valsesia A (2017) Transcriptome profiling from adipose tissue during a low-calorie diet reveals predictors of weight and glycemic outcomes in obese, nondiabetic subjects. Am J Clin Nutr. 106(3):736–746. https://doi.org/10.3945/ajcn.117.156216

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM., . . . Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 25(1):25–29. https://doi.org/10.1038/75556

Avram MM, Avram AS, James WD (2007) Subcutaneous fat in normal and diseased states 3 Adipogenesis: from stem cell to fat cell. J Am Acad Dermatol 56(3):472–492. https://doi.org/10.1016/j.jaad.2006.06.022

Article  PubMed  Google Scholar 

Baselga-Escudero L, Bladé C, Ribas-Latre A, Casanova E, Salvadó MJ, Arola L, Arola-Arnal A (2012) Grape seed proanthocyanidins repress the hepatic lipid regulators miR-33 and miR-122 in rats. Mol Nutr Food Res 56(11):1636–1646. https://doi.org/10.1002/mnfr.201200237

Article  PubMed  CAS  Google Scholar 

Chao W, D’Amore PA (2008) IGF2: epigenetic regulation and role in development and disease. Cytokine Growth Factor Rev 19(2):111–120. https://doi.org/10.1016/j.cytogfr.2008.01.005

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560

Article  PubMed  PubMed Central  CAS  Google Scholar 

Chen T, Zhang Y, Liu Y, Zhu D, Yu J, Li G, . . . Hong Z (2019) MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging (Albany NY). 11(18):7510–7524. https://doi.org/10.18632/aging.102263

Deiuliis JA (2016) MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes (Lond) 40(1):88–101. https://doi.org/10.1038/ijo.2015.170

Article  PubMed  CAS  Google Scholar 

Domergue F, Vishwanath SJ, Joubès J, Ono J, Lee JA, Bourdon M., . . . Rowland O (2010) Three Arabidopsis fatty acyl-coenzyme A reductases, FAR1, FAR4, and FAR5, generate primary fatty alcohols associated with suberin deposition. Plant Physiol. 153(4):1539–1554. https://doi.org/10.1104/pp.110.158238

Ferragut Cardoso AP, Banerjee M, Nail AN, Lykoudi A, States JC (2021) miRNA dysregulation is an emerging modulator of genomic instability. Semin Cancer Biol 76:120–131. https://doi.org/10.1016/j.semcancer.2021.05.004

Article  PubMed  PubMed Central  CAS  Google Scholar 

Garin-Shkolnik T, Rudich A, Hotamisligil GS, Rubinstein M (2014) FABP4 attenuates PPARγ and adipogenesis and is inversely correlated with PPARγ in adipose tissues. Diabetes 63(3):900–911. https://doi.org/10.2337/db13-0436

Article  PubMed  CAS  Google Scholar 

Hoeft B, Linseisen J, Beckmann L, Müller-Decker K, Canzian F, Hüsing A, Nieters A (2010) Polymorphisms in fatty-acid-metabolism-related genes are associated with colorectal cancer risk. Carcinogenesis 31(3):466–472. https://doi.org/10.1093/carcin/bgp325

Article  PubMed  CAS  Google Scholar 

Horak M, Novak J, Bienertova-Vasku J (2016) Muscle-specific microRNAs in skeletal muscle development. Dev Biol 410(1):1–13. https://doi.org/10.1016/j.ydbio.2015.12.013

Article  PubMed  CAS  Google Scholar 

Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/nar/28.1.27

Article  PubMed  PubMed Central  CAS  Google Scholar 

Ke K, Lou T (2017) MicroRNA-10a suppresses breast cancer progression via PI3K/Akt/mTOR pathway. Oncol Lett 14(5):5994–6000. https://doi.org/10.3892/ol.2017.6930

Article  PubMed  PubMed Central  CAS  Google Scholar 

Kiran S, Mandal M, Rakib A, Bajwa A, Singh UP (2023) miR-10a-3p modulates adiposity and suppresses adipose inflammation through TGF-β1/Smad3 signaling pathway. Front Immunol 14:1213415. https://doi.org/10.3389/fimmu.2023.1213415

Article  PubMed  PubMed Central  CAS  Google Scholar 

Klemm DJ, Leitner JW, Watson P, Nesterova A, Reusch JE, Goalstone ML, Draznin B (2001) Insulin-induced adipocyte differentiation. Activation of CREB rescues adipogenesis from the arrest caused by inhibition of prenylation. J Biol Chem 276(30):28430–28435. https://doi.org/10.1074/jbc.M103382200

Article  PubMed  CAS  Google Scholar 

Lai W, Yu L, Deng Y (2024) PPARγ alleviates preeclampsia development by regulating lipid metabolism and ferroptosis. Commun Biol 7(1):429. https://doi.org/10.1038/s42003-024-06063-2

Article  PubMed  PubMed Central  CAS  Google Scholar 

Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

Article  PubMed  PubMed Central  CAS  Google Scholar 

Markou A, Sourvinou I, Vorkas PA, Yousef GM, Lianidou E (2013) Clinical evaluation of microRNA expression profiling in non small cell lung cancer. Lung Cancer 81(3):388–396. https://doi.org/10.1016/j.lungcan.2013.05.007

Article  PubMed  CAS  Google Scholar 

Mi L, Chen Y, Zheng X, Li Y, Zhang Q, Mo D, Yang G (2015) MicroRNA-139-5p Suppresses 3T3-L1 Preadipocyte Differentiation Through Notch and IRS1/PI3K/Akt Insulin Signaling Pathways. J Cell Biochem 116(7):1195–1204. https://doi.org/10.1002/jcb.25065

Article  PubMed  CAS  Google Scholar 

Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, Georges M (1999) An imprinted QTL with major effect on muscle mass and fat deposition maps to the IGF2 locus in pigs. Nat Genet 21(2):155–156. https://doi.org/10.1038/5935

Article  PubMed  CAS  Google Scholar 

Peng W, Fu C, Shu S, Wang G, Wang H, Yue B, . . . Wang J (2024) Whole-genome resequencing of major populations revealed domestication-related genes in yaks. BMC Genomics 25(1):69. https://doi.org/10.1186/s12864-024-09993-7

Ringold GM, Chapman AB, Knight DM, Torti FM (1986). Hormonal Control of Adipogenesis.

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616

Article  PubMed  CAS  Google Scholar 

Rowland O, Zheng H, Hepworth SR, Lam P, Jetter R, Kunst L (2006) CER4 encodes an alcohol-forming fatty acyl-coenzyme A reductase involved in cuticular wax production in Arabidopsis. Plant Physiol 142(3):866–877. https://doi.org/10.1104/pp.106.086785

Article  PubMed  PubMed Central  CAS  Google Scholar 

Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH (2019) An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 234(5):5451–5465. https://doi.org/10.1002/jcp.27486

Article  PubMed  CAS  Google Scholar 

Tang R, Ma F, Li W, Ouyang S, Liu Z, Wu J (2017) miR-206–3p Inhibits 3T3-L1 Cell Adipogenesis via the c-Met/PI3K/Akt Pathway. Int J Mol Sci, 18(7). https://doi.org/10.3390/ijms18071510

Thumser AE, Moore JB, Plant NJ (2014) Fatty acid binding proteins: tissue-specific functions in health and disease. Curr Opin Clin Nutr Metab Care 17(2):124–129. https://doi.org/10.1097/mco.0000000000000031

Article  PubMed  CAS  Google Scholar 

Tirard J, Gout J, Lefrançois-Martinez AM, Martinez A, Begeot M, Naville D (2007) A novel inhibitory protein in adipose tissue, the aldo-keto reductase AKR1B7: its role in adipogenesis. Endocrinology 148(5):1996–2005. https://doi.org/10.1210/en.2006-1707

Article  PubMed  CAS  Google Scholar 

Trojnar M, Patro-Małysza J, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B, Mosiewicz J (2019) Associations between fatty acid-binding protein 4⁻A proinflammatory adipokine and insulin resistance, gestational and type 2 diabetes mellitus. Cells 8(3). https://doi.org/10.3390/cells8030227

Wang XC, Zhan XR, Li XY, Yu JJ, Liu XM (2014) MicroRNA-185 regulates expression of lipid metabolism genes and improves insulin sensitivity in mice with non-alcoholic fatty liver disease. World J Gastroenterol 20(47):17914–17923. https://doi.org/10.3748/wjg.v20.i47.17914

Article  PubMed  PubMed Central  CAS  Google Scholar 

Wang W, Li X, Ding N, Teng J, Zhang S, Zhang Q, Tang H (2020b) miR-34a regulates adipogenesis in porcine intramuscular adipocytes by targeting ACSL4. BMC Genet 21(1):33. https://doi.org/10.1186/s12863-020-0836-7

Article  PubMed

留言 (0)

沒有登入
gif