Genetic and molecular mechanisms underlying the male sterility in rice

Abbas A, Yu P, Sun L, Yang Z, Chen D, Cheng S, Cao L (2021) Exploiting genic male sterility in rice: from molecular dissection to breeding applications. Front Plant Sci 12:629314. https://doi.org/10.3389/fpls.2021.629314

Article  PubMed  PubMed Central  Google Scholar 

Ariizumi T, Toriyama K (2011) Genetic regulation of sporopollenin synthesis and pollen exine development. Ann Rev Plant Biol 62(1):437–460. https://doi.org/10.1146/annurev-arplant-042809-112312

Article  CAS  Google Scholar 

Aya K, Tanaka MU, Kondo M, Hamada K, Yano K, Nishimura M, Matsuoka M (2009a) Gibberellin modulates anther development in rice via the transcriptional regulation of GAMYB. Plant Cell 21(5):1453–1472. https://doi.org/10.1105/tpc.108.062935

Article  CAS  PubMed  PubMed Central  Google Scholar 

Basnet R, Hussain N, Shu Q (2019) OsDGD2β is the sole digalactosyldiacylglycerol synthase gene highly expressed in anther, and its mutation confers male sterility in rice. Rice 12:66. https://doi.org/10.1186/s12284-019-0320-z

Article  PubMed  PubMed Central  Google Scholar 

Bohra A, Jha UC, Adhimoolam P, Bisht D, Singh NP (2016) Cytoplasmic male sterility (CMS) in hybrid breeding in field crops. Plant Cell Rep 35(5):967–993. https://doi.org/10.1007/s00299-016-1949-3

Article  CAS  PubMed  Google Scholar 

Bohra A, Jha R, Singh IP (2017) Novel CMS lines in pigeon pea (Cajanus cajan (L.) Millspaugh) derived from cytoplasmic substitutions, their effective restoration and deployment in hybrid breeding. The Crop J 5:89–94. https://doi.org/10.1016/j.cj.2016.10.003

Article  Google Scholar 

Brownfield L, Ford K, Doblin MS, Newbigin E, Read S, Bacic A (2007) Proteomic and biochemical evidence links the callose synthase in nicotiana alata pollen tubes to the product of the NaGSL1 gene. The Plant J 52(1):147–156. https://doi.org/10.1111/j.1365-313X.2007.03219.x

Article  CAS  PubMed  Google Scholar 

Brownfield DL, Todd CD, Deyholos MK (2008) Analysis of Arabidopsis arginase gene transcription patterns indicates specific biological functions for recently diverged paralogs. Plant Mol Biol 67(4):429–440. https://doi.org/10.1007/s11103-008-9336-2

Article  CAS  PubMed  Google Scholar 

Byun MY, Kim WT (2014) Suppression of OsRAD51D results in defects in reproductive development in rice (Oryza sativa L.). The Plant J 79:256–269. https://doi.org/10.1111/tpj.12558

Article  CAS  PubMed  Google Scholar 

Cai C, Zhu J, Lou Y (2015) The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development between rice and Arabidopsis. Sci Bull 60:1073–1082. https://doi.org/10.1007/s11434-015-0810-3

Article  CAS  Google Scholar 

Chang Z, Chen Z, Wang N, Xie G, Lu J, Yan W (2016a) Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene. Proc Natl Acad Sci USA 113:14145–14150. https://doi.org/10.1073/pnas.1613792113

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chang Z, Chen Z, Yan W, Xie G, Lu J, Wang N (2016b) An ABC transporter, OsABCG26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice. Plant Sci 253:21–30. https://doi.org/10.1016/j.plantsci.2016.09.006

Article  CAS  PubMed  Google Scholar 

Chang Z, Jin M, Yan W, Chen H, Qiu S, Fu S, Xia J, Liu Y, Chen Z, Wu J, Tang X (2018) The ATP-binding cassette (ABC) transporter OsABCG3 is essential for pollen development in rice. Rice 11:58. https://doi.org/10.1186/s12284-018-0248-8

Article  PubMed  PubMed Central  Google Scholar 

Chen L, Liu YG (2014) Male sterility and fertility restoration in crops. Annual Reviews of Plant Biol 65:579–606. https://doi.org/10.1146/annurev-arplant-050213-040119

Article  CAS  Google Scholar 

Chen R, Zhao X, Shao Z, Wei Z, Wang Y, Zhu L (2007) Rice UDP-glucose pyrophosphorylase1 is essential for pollen callose deposition and its cosuppression results in a new type of thermosensitive genic male sterility. Plant Cell 19:847–861. https://doi.org/10.1105/tpc.106.044123

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen V, Kobayashi K, Miyao A (2013) Both OsRecQ1 and OsRDR1 are required for the production of small RNA in response to DNA-damage in rice. PLoS ONE 8(1):e55252

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen ZS, Liu XF, Wang DH, Chen R, Zhang XL, Xu ZH (2018) Transcription factor OsTGA10 is a target of the MADS protein OsMADS8 and is required for tapetum development. Plant Physiol 176:819–835. https://doi.org/10.1104/pp.17.01419

Article  CAS  PubMed  Google Scholar 

Chen H, Zhang Z, Ni E, Lin J, Peng G, Huang J (2020) HMS1 interacts with HMS1I to regulate very-long-chain fatty acid biosynthesis and the humidity-sensitive genic male sterility in rice (Oryza sativa). New Phytol 225:2077–2093. https://doi.org/10.1111/nph.16288

Article  CAS  PubMed  Google Scholar 

Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J (2012a) A long non coding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA 109:2654–2659. https://doi.org/10.1073/pnas.1121374109

Article  PubMed  PubMed Central  Google Scholar 

Ding J, Shen J, Mao H, Xie W, Li X, Zhang Q (2012b) RNA-directed DNA methylation is involved in regulating photoperiod sensitive male sterility in rice. Mol Plant 5:1210–1216. https://doi.org/10.1093/mp/sss095

Article  CAS  PubMed  Google Scholar 

Enns LC, Kanaoka MM, Torii KU, Comai L, Okada K, Cleland RE (2005) Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility. Plant Mol Biol 58(3):333–349. https://doi.org/10.1007/s11103-005-4526-7

Article  CAS  PubMed  Google Scholar 

Fan Y, Zhang Q (2018) Genetic and molecular characterization of photoperiod and thermo-sensitive male sterility in rice. Plant Rep 31(1):3–14. https://doi.org/10.1007/s00497-017-0310-5

Article  CAS  Google Scholar 

Fan Y, Yang J, Mathioni SM, Yu J, Shen J, Yang X (2016) PMS1T, producing phased small interfering RNAs, regulates photoperiod sensitive male sterility in rice. Proc Natl Acad Sci USA 113:15144–15149. https://doi.org/10.1073/pnas.1619159114

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fang Y, Guo D, Wang Y, Wang N, Fang X, Zhang Y, Li X, Chen L, Yu D, Zhang B, Qin G (2024) Rice transcriptional repressor OsTIE1 controls anther dehiscence and male sterility by regulating JA biosynthesis. Plant Cell 36:1697–1717. https://doi.org/10.1093/plcell/koae028

Article  PubMed  Google Scholar 

Farinati S, Draga S, Betto A, Palumbo F, Vannozzi A, Lucchin M, Barcaccia G (2023) Current insights and advances into plant male sterility: new precision breeding technology based on genome editing applications. Front Plant Sci 14:1223861. https://doi.org/10.3389/fpls.2023.1223861

Article  PubMed  PubMed Central  Google Scholar 

Feng J, Gen LY, Dong LX, Bin XX (2001) Pollen development and its stages in rice (Oryza sativa L.). Chin J Rice Sci 15(1):21–28. https://doi.org/10.16819/j.1001-7216.2001.01.005

Article  Google Scholar 

Fu Z, Yu J, Cheng X, Zong X, Xu J, Chen M, Li Z, Zhang D, Liang W (2014) The rice Basicf Tang Helix-Loop-Helix transcription factor TDR INTERACTING PROTEIN2 is a central switch in early anther development. Plant Cell 26(4):1512–1524. https://doi.org/10.1105/tpc.114.123745

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fujii S, Toriyama K (2009) Suppressed expression of retrograde-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. PNAS 106(23):9513–9518. https://doi.org/10.1073/pnas.0901860106

Article  PubMed 

留言 (0)

沒有登入
gif