ANXA1-FPR2 axis mitigates the susceptibility to atrial fibrillation in obesity via rescuing AMPK activity in response to lipid overload

Kornej J, Börschel CS, Benjamin EJ, Schnabel RB. Epidemiology of atrial fibrillation in the 21st century: novel methods and new insights. Circul Res. 2020;127(1):4–20.

Article  CAS  Google Scholar 

Brundel B, Ai X, Hills MT, Kuipers MF, Lip GYH, de Groot NMS. Atrial fibrillation. Nat Rev Dis Primers. 2022;8(1):21.

Article  PubMed  Google Scholar 

Pascual F, Coleman RA. Fuel availability and fate in cardiac metabolism: a tale of two substrates. Biochim Biophys Acta. 2016;1861(10):1425–33.

Article  CAS  PubMed  Google Scholar 

Harada M, Melka J, Sobue Y, Nattel S. Metabolic considerations in atrial fibrillation: mechanistic insights and therapeutic opportunities. Circ J Off J Jpn Circ Soc. 2017;81(12):1749–57.

Article  CAS  Google Scholar 

Barth AS, Tomaselli GF. Cardiac metabolism and arrhythmias. Circ Arrhythm Electrophysiol. 2009;2(3):327–35.

Article  Google Scholar 

Qin X, Zhang Y, Zheng Q. Metabolic inflexibility as a pathogenic basis for atrial fibrillation. Int J Mol Sci 2022;23(15).

Brown SM, Larsen NK, Thankam FG, Agrawal DK. Regulatory role of cardiomyocyte metabolism via AMPK activation in modulating atrial structural, contractile, and electrical properties following atrial fibrillation. Can J Physiol Pharmacol. 2021;99(1):36–41.

Article  CAS  PubMed  Google Scholar 

Mahajan R, Lau DH, Sanders P. Impact of obesity on cardiac metabolism, fibrosis, and function. Trends Cardiovasc Med. 2015;25(2):119–26.

Article  CAS  PubMed  Google Scholar 

Mahajan R, Lau DH, Brooks AG, Shipp NJ, Wood JPM, Manavis J, Samuel CS, Patel KP, Finnie JW, Alasady M, et al. Atrial fibrillation and obesity: reverse remodeling of atrial substrate with weight reduction. JACC Clin Electrophysiol. 2021;7(5):630–41.

Article  PubMed  Google Scholar 

Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circul Res. 2020;126(11):1477–500.

Article  Google Scholar 

Scott L Jr., Fender AC, Saljic A, Li L, Chen X, Wang X, Linz D, Lang J, Hohl M, Twomey D, et al. NLRP3 inflammasome is a key driver of obesity-induced atrial arrhythmias. Cardiovasc Res. 2021;117(7):1746–59.

Article  CAS  Google Scholar 

Chung MK, Eckhardt LL, Chen LY, Ahmed HM, Gopinathannair R, Joglar JA, Noseworthy PA, Pack QR, Sanders P, Trulock KM. Lifestyle and risk factor modification for reduction of atrial fibrillation: a scientific statement from the American Heart Association. Circulation. 2020;141(16):e750–72.

Article  PubMed  Google Scholar 

Lavie CJ, Pandey A, Lau DH, Alpert MA, Sanders P. Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis: effects of weight loss and exercise. J Am Coll Cardiol. 2017;70(16):2022–35.

Article  PubMed  Google Scholar 

Suffee N, Baptista E, Piquereau J, Ponnaiah M, Doisne N, Ichou F, Lhomme M, Pichard C, Galand V, Mougenot N, et al. Impacts of a high-fat diet on the metabolic profile and the phenotype of atrial myocardium in mice. Cardiovasc Res. 2022;118(15):3126–39.

Article  CAS  Google Scholar 

Zhang Y, Fu Y, Jiang T, Liu B, Sun H, Zhang Y, Fan B, Li X, Qin X, Zheng Q. Enhancing fatty acids oxidation via L-carnitine attenuates obesity-related atrial fibrillation and structural remodeling by activating AMPK signaling and alleviating cardiac lipotoxicity. Front Pharmacol. 2021;12:771940.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Qin X, Fu Y, Fan J, Liu B, Liu P, Zhang Y, Jiang T, Zheng Q. Melatonin increases susceptibility to atrial fibrillation in obesity via Akt signaling impairment in response to lipid overload. J Pineal Res. 2023;74(3):e12851.

Article  CAS  PubMed  Google Scholar 

Lupisella JA, Shirude PS, Wurtz NR, Garcia RA. Formyl peptide receptor 2 and heart disease. Semin Immunol. 2022;59:101602.

Article  CAS  PubMed  Google Scholar 

Chen X, Zhuo S, Zhu T, Yao P, Yang M, Mei H, Li N, Ma F, Wang JM, Chen S, et al. Fpr2 deficiency alleviates diet-induced insulin resistance through reducing body weight gain and inhibiting inflammation mediated by macrophage chemotaxis and M1 polarization. Diabetes. 2019;68(6):1130–42.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wu L, Liu C, Chang DY, Zhan R, Zhao M, Man Lam S, Shui G, Zhao MH, Zheng L, Chen M. The Attenuation of diabetic nephropathy by annexin A1 via regulation of lipid metabolism through the AMPK/PPARα/CPT1b pathway. Diabetes. 2021;70(10):2192–203.

Article  CAS  PubMed  Google Scholar 

Tourki B, Kain V, Pullen AB, Norris PC, Patel N, Arora P, Leroy X, Serhan CN, Halade GV. Lack of resolution sensor drives age-related cardiometabolic and cardiorenal defects and impedes inflammation-resolution in heart failure. Mol Metab. 2020;31:138–49.

Article  CAS  PubMed  Google Scholar 

Yarmohammadi F, Hayes AW, Karimi G. Possible protective effect of resolvin D1 on inflammation in atrial fibrillation: involvement of ER stress mediated the NLRP3 inflammasome pathway. Naunyn Schmiedebergs Arch Pharmacol. 2021;394(8):1613–9.

Article  CAS  PubMed  Google Scholar 

Hiram R, Xiong F, Naud P, Xiao J, Sosnowski DK, Le Quilliec E, Saljic A, Abu-Taha IH, Kamler M, LeBlanc CA, et al. An inflammation resolution-promoting intervention prevents atrial fibrillation caused by left ventricular dysfunction. Cardiovascular Res. 2024;120(4):345–59.

Article  Google Scholar 

Yoon JH, Kim D, Jang JH, Ghim J, Park S, Song P, Kwon Y, Kim J, Hwang D, Bae YS, et al. Proteomic analysis of the palmitate-induced myotube secretome reveals involvement of the annexin A1-formyl peptide receptor 2 (FPR2) pathway in insulin resistance. Mol Cell Proteom. 2015;14(4):882–92.

Article  CAS  Google Scholar 

Liu P, Sun H, Zhou X, Wang Q, Gao F, Fu Y, Li T, Wang Y, Li Y, Fan B, et al. CXCL12/CXCR4 axis as a key mediator in atrial fibrillation via bioinformatics analysis and functional identification. Cell Death Dis. 2021;12(9):813.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Adebayo AS, Roman M, Zakkar M, Yusoff S, Gulston M, Joel-David L, Anthony B, Lai FY, Murgia A, Eagle-Hemming B, et al. Gene and metabolite expression dependence on body mass index in human myocardium. Sci Rep. 2022;12(1):1425.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou G, Soufan O, Ewald J, Hancock REW, Basu N, Xia J. NetworkAnalyst 3.0: a visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019;47(W1):W234–41.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

Article  PubMed  PubMed Central  Google Scholar 

von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258–61.

Article  Google Scholar 

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(Suppl 4):S11.

Article  PubMed  PubMed Central  Google Scholar 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015;1(6):417–25.

Article  CAS 

留言 (0)

沒有登入
gif