L-Arginine supplementation as mitochondrial therapy in diabetic cardiomyopathy

Huo JL, Feng Q, Pan S, Fu WJ, Liu Z, Liu Z. Diabetic cardiomyopathy: early diagnostic biomarkers, pathogenetic mechanisms, and therapeutic interventions. Cell Death Discov. 2023;9(1):256.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grubic Rotkvic P, Planinic Z, Liberati Prso AM, Sikic J, Galic E, Rotkvic L. The Mystery of Diabetic Cardiomyopathy: from early concepts and underlying mechanisms to novel therapeutic possibilities. Int J Mol Sci 2021;22(11).

Yin L, Sun Z, Ren Q, Su X, Zhang D. Long non-coding RNA BANCR is overexpressed in patients with diabetic retinopathy and promotes apoptosis of retinal pigment epithelial cells. Med Sci Monit. 2019;25:2845–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Duncan JG, Fong JL, Medeiros DM, Finck BN, Kelly DP. Insulin-resistant heart exhibits a mitochondrial biogenic response driven by the peroxisome proliferator-activated receptor-alpha/PGC-1alpha gene regulatory pathway. Circulation. 2007;115(7):909–17.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Flarsheim CE, Grupp IL, Matlib MA. Mitochondrial dysfunction accompanies diastolic dysfunction in diabetic rat heart. Am J Physiol. 1996;271(1 Pt 2):H192–202.

CAS  PubMed  Google Scholar 

Zhang GQ, Wang SQ, Chen Y, Fu LY, Xu YN, Li L, Tao L, Shen XC. MicroRNAs regulating mitochondrial function in cardiac diseases. Front Pharmacol. 2021;12:663322.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hong H, Tao T, Chen S, Liang C, Qiu Y, Zhou Y, Zhang R. MicroRNA-143 promotes cardiac ischemia-mediated mitochondrial impairment by the inhibition of protein kinase Cepsilon. Basic Res Cardiol. 2017;112(6):60.

Article  PubMed  Google Scholar 

Zhu H, Leung SW. MicroRNA biomarkers of type 2 diabetes: evidence synthesis from meta-analyses and pathway modelling. Diabetologia. 2023;66(2):288–99.

Article  CAS  PubMed  Google Scholar 

Gambardella J, Fiordelisi A, Spigno L, Boldrini L, Lungonelli G, Di Vaia E, Santulli G, Sorriento D, Cerasuolo FA, Trimarco V et al. Effects of chronic supplementation of L-Arginine on physical fitness in water polo players. Oxid Med Cell Longev. 2021;2021:6684568.

Article  PubMed  PubMed Central  Google Scholar 

Gambardella J, Khondkar W, Morelli MB, Wang X, Santulli G, Trimarco V. Arginine and endothelial function. Biomedicines. 2020;8(8).

Hristina K, Langerholc T, Trapecar M. Novel metabolic roles of L-Arginine in body energy metabolism and possible clinical applications. J Nutr Health Aging. 2014;18(2):213–8.

Article  CAS  PubMed  Google Scholar 

Matsuoka H, Nakata M, Kohno K, Koga Y, Nomura G, Toshima H, Imaizumi T. Chronic L-Arginine administration attenuates cardiac hypertrophy in spontaneously hypertensive rats. Hypertension. 1996;27(1):14–8.

Article  CAS  PubMed  Google Scholar 

Alex L, Russo I, Holoborodko V, Frangogiannis NG. Characterization of a mouse model of obesity-related fibrotic cardiomyopathy that recapitulates features of human heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol. 2018;315(4):H934–49.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.

Article  PubMed  Google Scholar 

Mancuso M, Angelini C, Bertini E, Carelli V, Comi GP, Minetti C, Moggio M, Mongini T, Servidei S, Tonin P, et al. Fatigue and exercise intolerance in mitochondrial diseases. Literature revision and experience of the Italian Network of mitochondrial diseases. Neuromuscul Disord. 2012;22(Suppl):S226–229.

Article  PubMed  PubMed Central  Google Scholar 

McCandless MG, Altara R, Booz GW, Kurdi M. What role do mitochondria have in diastolic dysfunction? Implications for diabetic cardiomyopathy and heart failure with preserved ejection function. J Cardiovasc Pharmacol. 2022;79(4):399–406.

Article  CAS  PubMed  Google Scholar 

Chen X, Luo X, Chen D, Yu B, He J, Huang Z. Arginine promotes porcine type I muscle fibres formation through improvement of mitochondrial biogenesis. Br J Nutr. 2020;123(5):499–507.

Article  CAS  PubMed  Google Scholar 

Zhang H, Zheng P, Chen D, Yu B, He J, Mao X, Yu J, Luo Y, Luo J, Huang Z et al. Dietary arginine supplementation improves intestinal mitochondrial functions in low-birth-weight piglets but not in normal-birth-weight piglets. Antioxid (Basel). 2021;10(12).

Halling JF, Pilegaard H. PGC-1alpha-mediated regulation of mitochondrial function and physiological implications. Appl Physiol Nutr Metab. 2020;45(9):927–36.

Article  CAS  PubMed  Google Scholar 

Jager S, Handschin C, St-Pierre J, Spiegelman BM. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104(29):12017–22.

Article  PubMed  PubMed Central  Google Scholar 

Rohas LM, St-Pierre J, Uldry M, Jager S, Handschin C, Spiegelman BM. A fundamental system of cellular energy homeostasis regulated by PGC-1alpha. Proc Natl Acad Sci U S A. 2007;104(19):7933–8.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chidnok W, Fulford J, Bailey SJ, Dimenna FJ, Skiba PF, Vanhatalo A, Jones AM. Muscle metabolic determinants of exercise tolerance following exhaustion: relationship to the critical power. J Appl Physiol (1985). 2013;115(2):243–50.

Article  PubMed  Google Scholar 

Rowe GC, Jiang A, Arany Z. PGC-1 coactivators in cardiac development and disease. Circ Res. 2010;107(7):825–38.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xihua L, Shengjie T, Weiwei G, Matro E, Tingting T, Lin L, Fang W, Jiaqiang Z, Fenping Z, Hong L. Circulating miR-143-3p inhibition protects against insulin resistance in metabolic syndrome via targeting of the insulin-like growth factor 2 receptor. Transl Res. 2019;205:33–43.

Article  PubMed  Google Scholar 

Muralimanoharan S, Maloyan A, Myatt L. Mitochondrial function and glucose metabolism in the placenta with gestational diabetes mellitus: role of miR-143. Clin Sci (Lond). 2016;130(11):931–41.

Article  CAS  PubMed  Google Scholar 

Lu CH, Chen DX, Dong K, Wu YJ, Na N, Wen H, Hu YS, Liang YY, Wu SY, Lin BY, et al. Inhibition of miR-143-3p alleviates myocardial ischemia reperfusion injury via limiting mitochondria-mediated apoptosis. Biol Chem. 2023;404(6):619–31.

Article  CAS  PubMed  Google Scholar 

Zurkan D, Edelmann F. Diagnosis of heart failure with preserved ejection fraction. Dtsch Med Wochenschr. 2024;149(4):151–6.

PubMed  Google Scholar 

Jankauskas SS, Kansakar U, Varzideh F, Wilson S, Mone P, Lombardi A, Gambardella J, Santulli G. Heart failure in diabetes. Metabolism. 2021;125:154910.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jankauskas SS, Mone P, Avvisato R, Varzideh F, De Gennaro S, Salemme L, Macina G, Kansakar U, Cioppa A, Frullone S, et al. miR-181c targets Parkin and SMAD7 in human cardiac fibroblasts: validation of differential microRNA expression in patients with diabetes and heart failure with preserved ejection fraction. Mech Ageing Dev. 2023;212:111818.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mone P, Lombardi A, Kansakar U, Varzideh F, Jankauskas SS, Pansini A, Marzocco S, De Gennaro S, Famiglietti M, Macina G, et al. Empagliflozin improves the MicroRNA signature of endothelial dysfunction in patients with heart failure with preserved ejection fraction and diabetes. J Pharmacol Exp Ther. 2023;384(1):116–22.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sacre JW, Jellis CL, Haluska BA, Jenkins C, Coombes JS, Marwick TH, Keske MA. Association of exercise intolerance in type 2 diabetes with skeletal muscle blood flow reserve. JACC Cardiovasc Imaging. 2015;8(8):913–21.

Article  PubMed  Google Scholar 

Nesti L, Pugliese NR, Sciuto P, Natali A. Type 2 diabetes and reduced exercise tolerance: a review of the literature through an integrated physiology approach. Cardiovasc Diabetol. 2020;19(1):134.

Article  CAS 

留言 (0)

沒有登入
gif