Croxall J, Reid K, Prince P. Diet, provisioning and productivity responses of marine predators to differences in availability of Antarctic krill. Mar Ecol Prog Ser. 1999;177:115–31.
Atkinson A, Siegel V, Pakhomov EA, Jessopp MJ, Loeb V. A re-appraisal of the total biomass and annual production of Antarctic krill. Deep Sea Res Part I Oceanogr Res Pap. 2009;56(5):727–40.
CCAMLR (Commission for the Conservation of Antarctic Marine Living Resources). Fishery report 2020: Euphausia superba in area 48. CCAMLR, Hobart. 2021b.
Kawaguchi S, Atkinson A, Bahlburg D, Bernard KS, Cavan EL, Cox MJ, Hill SL, Meyer B, Veytia D. Climate change impacts on Antarctic krill behaviour and population dynamics. Nat Rev Earth Environ. 2024;5:43–58.
Cavan EL, Belcher A, Atkinson A, Hill SL, Kawaguchi S, McCormack S, Meyer B, Nicol S, Ratnarajah L, Schmidt K, Steinberg DK, Tarling GA, Boyd PW. Author Correction: the importance of Antarctic krill in biogeochemical cycles. Nat Commun. 2019;10:4742.
Article PubMed PubMed Central Google Scholar
De Meester L, Mehner T, Scofield A. Diel Vertical Migration. In: Mehner T, editor. Encyclopedia of Inland Waters. Elsevier; 2009. p. 281–91.
Häfker NS, Meyer B, Last KS, Pond DW, Hüppe L, Teschke M. Circadian clock involvement in zooplankton diel vertical migration. Curr Biol. 2017;27(14):2194-2201.e3.
Piccolin F, Pitzschler L, Biscontin A, Kawaguchi S, Meyer B. Circadian regulation of diel vertical migration (DVM) and metabolism in Antarctic krill Euphausia superba. Sci Rep. 2020;10:16796.
Article PubMed PubMed Central Google Scholar
Floessner T, Hut RA. Basic principles underlying biological oscillations and their entrainment. In: Kumar V, editor. Biological Timekeeping: Clocks, Rhythms and Behaviour. Springer India; 2017. p. 47–58.
Yuan Q, Metterville D, Briscoe AD, Reppert SM. Insect cryptochromes: gene duplication and loss define diverse ways to construct insect circadian clocks. Mol Biol Evol. 2007;24(4):948–55.
Teschke M, Wendt S, Kawaguchi S, Kramer A, Meyer B. A circadian clock in Antarctic krill: an endogenous timing system governs metabolic output rhythms in the euphausid species Euphausia superba. PLoS One. 2011;6(10):e26090.
Article PubMed PubMed Central Google Scholar
Piccolin F, Suberg L, King R, Kawaguchi S, Meyer B, Teschke M. The seasonal metabolic activity cycle of Antarctic krill (Euphausia superba): evidence for a role of photoperiod in the regulation of endogenous rhythmicity. Front Physiol. 2018;9:1715.
Article PubMed PubMed Central Google Scholar
Reppert SM. The ancestral circadian clock of monarch butterflies: role in time-compensated sun compass orientation. Cold Spring Harb Symp Quant Biol. 2007;72:113–8.
Mazzotta GM, De Pittà C, Benna C, Tosatto SCE, Lanfranchi G, Bertolucci C, Costa R. A cry from the krill. Chronobiol Int. 2010;27(3):425–45.
Biscontin A, Wallach T, Sales G, Grudziecki A, Janke L, Sartori E, Bertolucci C, Mazzotta G, De Pittà C, Meyer B, et al. Functional characterization of the circadian clock in the Antarctic krill. Euphausia superba Sci Rep. 2017;7:17742.
Blau J, Young MW. Cycling vrille expression is required for a functional Drosophila clock. Cell. 1999;99(6):661–71.
Lim C, Lee J, Koo E, Choe J. Targeted inhibition of Pdp1ε abolishes the circadian behaviour of Drosophila melanogaster. Biochem Biophys Res Commun. 2007;364(2):294–300.
Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NRJ, Hardin PE, Young MW, Storti RV, Blau J. Vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell. 2003;112(3):329–41.
Cowell IG, Skinner A, Hurst HC. Transcriptional repression by a novel member of the bZIP family of transcription factors. Mol Cell Biol. 1992;12(7):3070–7.
PubMed PubMed Central Google Scholar
Gunawardhana KL, Rivas GBS, Caster C, Hardin PE. Crosstalk between vrille transcripts, proteins, and regulatory elements controlling circadian rhythms and development in Drosophila. IScience. 2020;24(1):101893.
Article PubMed PubMed Central Google Scholar
Öztürk-Çolak A, Marygold SJ, Antonazzo G, Attrill H, Goutte-Gattat D, Jenkins VK, Matthews BB, Millburn G, dos Santos G, Tabone CJ, et al. FlyBase: updates to the Drosophila genes and genomes database. Genetics. 2024;227(1):iyad211.
Article PubMed PubMed Central Google Scholar
Reddy KL, Wohlwill A, Dzitoeva S, Lin MH, Holbrook S, Storti RV. The Drosophila PAR Domain Protein 1 (Pdp1) gene encodes multiple differentially expressed mRNAs and proteins through the use of multiple enhancers and promoters. Dev Biol. 2000;224(2):401–14.
Biscontin A, Martini P, Costa R, Kramer A, Meyer B, Kawaguchi S, Teschke M, De Pittà C. Analysis of the circadian transcriptome of the Antarctic krill Euphausia superba. Sci Rep. 2019;9:13894.
Article PubMed PubMed Central Google Scholar
Hunt BJ, Özkaya Ö, Davies NJ, Gaten E, Seear P, Kyriacou CP, Tarling G, Rosato E. The Euphausia superba transcriptome database, SuperbaSE: an online, open resource for researchers. Ecol Evol. 2017;7(16):6060–77.
Article PubMed PubMed Central Google Scholar
Urso I, Biscontin A, Corso D, Bertolucci C, Romualdi C, De Pittà C, Meyer B, Sales G. A thorough annotation of the krill transcriptome offers new insights for the study of physiological processes. Sci Rep. 2022;12:11415.
Article PubMed PubMed Central Google Scholar
Lamprecht C, Mueller CR. D-site binding protein transactivation requires the proline- and acid-rich domain and involves the coactivator p300. J Biol Chem. 1999;274(25):17643–8.
Lin SC, Lin MH, Horvath P, Reddy KL, Storti RV. PDP1, a novel Drosophila PAR domain bZIP transcription factor expressed in developing mesoderm, endoderm and ectoderm, is a transcriptional regulator of somatic muscle genes. Development. 1997;124(22):4685–96.
Raghavan V, Eichele G, Larink O, Karin EL, Söding J. RNA sequencing indicates widespread conservation of circadian clocks in marine zooplankton. NAR Genom and Bioinform. 2023;5(1):lqad007.
Thaben PF, Westermark PO. Detecting rhythms in time series with RAIN. J Biol Rhythms. 2014;29(6):391–400.
Article PubMed PubMed Central Google Scholar
Christie AE, Fontanilla TM, Nesbit KT, Lenz PH. Prediction of the protein components of a putative Calanus finmarchicus (Crustacea, Copepoda) circadian signaling system using a de novo assembled transcriptome. Comp Biochem Physiol Part D Genomics Proteomics. 2013;8:165–93.
Article PubMed PubMed Central Google Scholar
Nesbit KT, Christie AE. Identification of the molecular components of a Tigriopus californicus (Crustacea, Copepoda) circadian clock. Comp Biochem Physiol Part D Genomics Proteomics. 2014;12:16–44.
Shao C, Sun S, Liu K, Wang J, Li S, Liu Q, Deagle BE, Seim I, Biscontin A, Wang Q, et al. The enormous repetitive Antarctic krill genome reveals environmental adaptations and population insights. Cell. 2023;186(6):1279-1294.e19.
Duvaud S, Gabella C, Lisacek F, Stockinger H, Ioannidis V, Durinx C. Expasy, the Swiss Bioinformatics Resource Portal, as designed by its users. Nucleic Acids Res. 2021;49(W1):W216–27.
Article PubMed PubMed Central Google Scholar
UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023;51(D1):D523–31.
Sievers F, Higgins DG. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018;27(1):135–45.
Tamura K, Stecher G, Kumar S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol Biol Evol. 2021;38(7):3022–7.
留言 (0)